Recurrent Neural Networks for Natural Language Inference

Peter Mitura (miturpet@fit.cvut.cz)

December 19, 2017

1 Introduction

Natural Language Inference (NLI) is a class of classi-
fication problems, where we are given two natural lan-
guage sentences, and our goal is to find out whether
the first one (called hypothesis) could be deduced
from the second one (called premise).

Three possible outcomes are considered:

a) Entailment The hypothesis can be deduced from
the premise. Example premise and hypothesis:

An old man with a package poses in front
of an advertisement.

A man poses in front of an ad.

b) Contradiction: The hypothesis is contradicted
by the premise. Example:

A land rover is being driven across a
river.

A sedan is stuck in the middle of a river.

c) Neutral: Both sentences have an independent
meaning. Example:

A man in a black shirt is overlooking bike
maintenance.

A man learns bike maintenance.

The advancement in this field was significantly ac-
celerated by the Stanford Natural Language Inference
(SNLI) dataset [1], which contains over 570000 sen-
tence pairs, each labeled by a majority vote of five
independent human annotators, as the classification
might be subjective to some extent.

We have used this dataset in order to compare sev-
eral recurrent neural network (RNN) setups. A baseline
model is given by authors of the dataset, which has
77.6% testing accuracy [1] and uses separate LSTM
encoders for both sentences. The current state of the
art models are able to achieve up to 86% accuracy [2],
or even 89.1% [3] if we allow attention models and en-
sembles.

2 Used models

Since feeding the individual letters into the network
would not be computationally feasible, we have de-
cided to use the word-by-word approach. Words are
represented by pretrained word embeddings with 300
parameters, gained from the Glove Common Crawl
Corpus [4]. It has a vocabulary of nearly 1900000
words, found by crawling various internet sources and
trained on co-occurrence statistics.

During our preprocessing stage, words found in
the embedding database are transformed into corre-
sponding vectors. Of 36 273 distinct words in the SNLI
dataset, 32 033 are represented in the GloVe. A more
detailed look into the unmatched words has shown,
that most of them are typos, compound words, or
generally uncommon. Sentences containing unknown
words are not used for training, reducing the size of the
input dataset to 535 392.

Our model does not further train these weights, as
it would add an unnecessary bulk of additional param-
eters. Instead, the first layer of all networks we use is
always a dense layer, applied to each time step with
same weights. This allows the network to shift and
turn off parameters in embeddings as needed, without
the need to adjust each value separately.

On top of that, and based on a multitude of runs
with a smaller input set (limited to first 10000 or
100 000 pairs), we have selected two RNN setups for
comparison on the full dataset.

The first one is similar to the baseline used in [1],
using two separate recurrent encoders for sentences,
and then feeding them to three non-recurrent layers.
We have used a larger number of parameters than
the baseline, employing 300 neurons in each recur-
rent layer and 600 neurons in dense layers, in order to
match the size of embeddings. For recurrent layers,
gated recurrent units (GRU) are used instead of LSTM
cells, as lengths of the sequences are generally short
and GRU cells have been shown to achieve similar re-
sults as LSTMs, but with a better time performance [5].
The model is visualized in Figure 1.

The second model operates in an analogous fash-
ion, but uses two recurrent layers instead of one, and
feeds their output into two non-recurrent dense layers.
This could in theory allow the network to encode more
complicated patterns inside recurrent encoders. The
model is visualized in Figure 2.

Both models use a three-way softmax classifier at
the end, and are trained with respect to cross entropy
cost function by a RMSProp optimizer with learning
rate of 0.001. As overfitting was generally low thanks
to large data size and variance, we have tried to run
both networks without any dropout layers, and with
dropouts on output of every layer using the keep rate
of 0.9.

3 Results

Both models have been trained in at most 20 epochs
(with early stop after 5 epochs if the testing accuracy
does not improve) using the full dataset. The training
and testing accuracy of both used models are shown
in Table 1. As dropout was applied during the train-
ing but turned off in testing phase, training accuracy
may appear lower than it should when it is used. The

progression of accuracy during training in both sin-
gle GRU models is visualized in Figure 3. All trainings
have been performed on a single NVIDIA GeForce GTX
1050 Ti GPU, with one training session lasting around
6 hours in case of single GRU setup and 9 hours with
double GRU.

4 Conclusion

As the runs have shown, fitting on the full dataset was
so difficult, that models without any dropout managed
to achieve best results and did not exhibit any signs of
overfitting. Our single GRU setup has matched results
of the baseline in terms of testing accuracy, although
we had to use much more parameters, meaning there
is still a lot of room for improvement. The configu-
ration with a second GRU layer has been shown to
have no additional benefits in comparison with the first
model, while being slower to train, meaning the future
improvements should probably adopt different direc-
tion.

The source code is publicly available at https://
github.com/PMitura/snli-rnn/ under MIT license.

Training accuracy Testing accuracy

Model Number of parameters
Single GRU, 0.1 dropout 2346003
Single GRU, no dropout 2346003
Double GRU, 0.1 dropout 1985403
Double GRU, no dropout 1985403

72.39% 74.86%
77.37% 77.12%
70.60% 74.00%
76.70% 76.47%

Table 1: Training and testing accuracy for all tested models.

300D premise embedding 300D hypothesis embedding

l !

300D Dense (all timesteps) 300D Dense (all timesteps)

! !

300D GRU encoder 300D GRU encoder

[|
13 v

600D Dense

!

600D Dense

!

600D Dense

3-way softmax

Figure 1: Single GRU setup.

300D premise embedding 300D hypothesis embedding

! !

300D Dense (all timesteps) 300D Dense (all timesteps)

! }

300D GRU encoder 300D GRU encoder

! I

300D GRU encoder 300D GRU encoder

[|
v v

600D Dense

}

600D Dense

Figure 2: Double GRU setup.

Accuracy

5 10 5 20
Epoch

== Test Accuracy, no dropout == == Train Accuracy, no dropout Test accuracy, 0.1 dropout Train accuracy, 0.1 dropout

Figure 3: Progression of accuracy during epochs in tested single GRU models.

References

[1] S.R.Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large annotated corpus for learning natural language in-
ference,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Association for Computational Linguistics, 2015.

[2] Y. Nie and M. Bansal, “Shortcut-stacked sentence encoders for multi-domain inference” CORR,
vol. abs/1708.02312, 2017.

[3] Q. Chen, X. Zhu, Z. Ling, D. Inkpen, and S. Wei, “Natural language inference with external knowledge,” CoRR,
vol. abs/1711.04289, 2017.

[4] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 1532-1543, 2014.

[5] J. Chung, C. Giilgehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on se-
quence modeling,” CoRR, vol. abs/1412.3555, 2014.

