Filtering and Displaying Spectrogram Data

Jakub Rybar

CVUT-FIT
rybarja6@fit.cvut.cz

February 28, 2025

1 Goals

The goal of this project is to create a toolbox that
can do the following:

1. Easily view signal data in the form of a spec-
trogram from the command line.

2. Process the spectrogram image to make it
more readable and to find unusual areas of
interest (usually strong or irregular signals).
Make separate processing steps clear and view-
able.

3. Save these found signals in some usable form
for later use.

2 Input and Output

2.1 Input

The script expects signal data in the form of an
.hdf5 file. This signal is processed and previewed
based on numerous user parameters in the command
line.

2.2 Save the data
The script locates strong / irregular signals and is

able to save them in the form of a JSON file.

The file mainly consists of a metadata key and
a segments key. Individual segments are saved as
rectangles (with x, y, width and height).

2.3 Preview the image

The processed / unprocessed spectrogram overlayed
with found segments can be previewed based on
user parameter. More information is included in

the README.

3 Processing the signal

3.1 Processing steps

The original signal is processed with multiple se-
quential operations [I]:

Figure 1: Original spectrogram

Frequency [Hz]

Figure 2: Pre-Processing Figure 3: Normalization

800 800
¥ 600 ¥ 600
w b
200 200
20) 50 0 20 w0 50 80
Time 5] Time [s]

Figure 4: Filtering Figure 5: Segmentation

Frequency [Hz]

1. Signal to spectrogram — Convert the in-
coming signal into a spectrogram image.

2. Pre-processing — Get rid of unwanted regu-
lar patterns.

3. Normalization — Convert the pixel value
range from arbitrary values to the 0-1 range
to prepare for image operations.

4. Image filtering — Apply local operations like
blurring or morphology| to get rid of noise.

5. Segmentation — Locate and save locations
with strong enough signal.

See an example of the processing chain on small
test data in figures[I]to[5l All of these images are
made only by adjusting the CLI arguments.

mailto:rybarja6@fit.cvut.cz
https://en.wikipedia.org/wiki/Mathematical_morphology

Figure 6: Original spectrogram mapped for preview

Figure 7: Row average

Figure 8: Row median

3.2 Spectrogram

Use a FFT algorithm to convert the incoming signal
into a spectrogram.

3.3 Pre-Processing

The testing data often contained some strong and
consistent frequencies. Even though these signals
are strong, they are consistent and often cover up
actually interesting signals, so it turns out to be
very effective to "average them out'. Another bene-
fit of "averaging out"' these values turned out to be
detecting other irregularities like suddenly missing
signal. With some data, these consistent signals can
also be found in the vertical axis.

The following text explains how to average out
the rows — the same process applies to the columns.
To average out these signals, we want to divide all
the row’s pixels by the row’s median. Using the
arithmetic average or some other deviations turned
out to skew the results if the row is intersected by
some other strong, irregular signal (see figures
and . The horizontal pre-processing is also done
in parts (vertical image slices) so the median is less
biased for wider images with smooth transitions.

It is important to perform this averaging opera-
tion early to so that no inconsistencies are caused
by any non-linear operations or by local filters.

3.4 Normalization

This step might reduce overall image information,
but it is necessary to be able to easily apply im-
age transformations later. After attempting multi-
ple, approaches I decided to divide the pixel values

by a normalization_value, that is ideally above
the noise ceiling and below the signal floor. My
best attempt to find this value was to take the
80th percentile of all the image pixels. This per-
centile value is modifiable by the user because it
might differ between different spectrograms. We
can also subtract this value from the original since
it is below the signal floor [IJ.

. pixel value — percentile
normalized =

(1)

percentile
Finding the normalization_value:

e Using an arithmetic average — This wouldn’t
work as well due to same reasons as mentioned
in pre-processing.

e Using a median — Median is better because
it doesn’t get affected by small area strong
intensity signals.

» Using a percentile (used) — Using a high
percentile is better than a median; most pixels
in the image are usually just noise. A median
value is usually way too low.

e Using Otsu’s threshold — Sounded promis-
ing but the results seemed to perform worse
than using a percentile. This might be useful
to investigate further.

Other attempted approaches for normalizing;:

e A logarithmic scale — A logarithmic scale
is often used to compress spectrogram images
so they are easier to view. However, this
non-linear operation compresses the brighter
values, making it harder to threshold them.
The results also differ heavily between spec-
trograms with different "exposure levels".

e |Global tone mapping — Some global tone
mapping equations are a good way to com-
press the dynamic range of any image data to
any desired range. However, as they are also
non-linear, they struggle from the same issues
as the logarithmic scale.

o Dividing by a normalization value (equa-
tion used) — Compared to the previous
methods we lose a lot of data below 0 and
above 1. However, this isn’t an issue at all
because we're only losing data that we already
know to be noise / signal. What’s important
is that the operation is linear and that the
whole value range between the noise ceiling
and the signal floor is in the 0-1 range - ready
for filtering and thresholding with minimal
adjustments.

https://en.wikipedia.org/wiki/Otsu's_method
https://en.wikipedia.org/wiki/Tone_mapping

Frequency [Hz]
5 5 G g
g ¥ 8 B & 3

N
&

Figure 9: Contours and bounding boxes

3.5 Filtering

In this section we need to remove as much noise as
feasible and prepare the image for thresholding and
for segmentation.

The first logical operation for removing noise
would be to apply a blur. However, applying a
simple Gaussian blur on the image would destroy a
lot of data. A small way to remedy that is to use
some kind of an ledge-preserving blur| or to use a
morphological filter.

For edge-preserving blurring I used a guided filter
as from my experiments the results are similar to a
bilateral filter but with better performance.

Filtering steps, my approach:

1. Guided filter — Eliminate most of the noise.
A small radius of 1 to 2 pixels is enough for
most images.

2. Morphology open (erode, then dilate) —
Get rid of small, bright, isolated areas of the
signal. Great for getting rid of salt-and-pepper
noise.

3. Guided filter, 2nd pass — Used to clean up
the remaining salt-and-pepper noise.

4. Morphology close (dilate, then erode) —
To close up holes and to connect near signals
without altering their overall size.

5. Dilate (optional) — To merge near signals
into one larger future segment.

3.6 Segmentation

To prepare the image for segmentation we need to
convert the single channel image into a binary image
(an image, where the channel’s value is only 0 or 1).
The image threshold is calculated using the Otsu’s
method.

Segmentation was implemented using an OpenCV
function to find the image contours. The output
rectangle segments are calculated as bounding boxes
from individual contours. Segments with small side
lengths (based on user’s input) are discarded and
the rest of them are saved. For an example of con-
tours and segments being calculated from a binary
image see Figure [9]

The total area of the segments is also saved but
it should probably only ever be used for comparison
between the same source spectrogram as with dif-
ferent signal processing settings the spectrogram’s
pixel aspect ratio can dramatically differ.

4 Viewing the data

As set by one of the goals, any part of the filtering
process can be previewed by choosing the type of
the --preview option in the command line. Most
example images in this report were generated only
using these user options.

5 About the code

5.1 Pylint

According to the assignment, the code is written in
accordance with the PEPS code style, excluding:

e C0301 (long lines), C0103 (short variable names)

e R0913 (too many arguments) and by exten-
sion R0914 (too many locals) — this choice was
made due to a large number of inputable CLI
arguments. Most of the arguments in these
methods are optional, and grouping them to-
gether might reduce code clarity.

e There may be other exceptions caused by
third-party libraries.

5.2 Pytest

The repository contains tests for .hdf5 loading,
spectrogram filtering and segmenting, as these were
important to achieve the project’s goals.

6 Underwater processing example

A more interesting example of larger and noisier
underwater data can be seen on Figures [10] to
To deal with the noise, the percentile value was
lowered, and the filtering strength was increased.

https://en.wikipedia.org/wiki/Edge-preserving_smoothing
https://en.wikipedia.org/wiki/Mathematical_morphology
https://en.wikipedia.org/wiki/Guided_filter
https://en.wikipedia.org/wiki/Bilateral_filter
https://en.wikipedia.org/wiki/Salt-and-pepper_noise
https://en.wikipedia.org/wiki/Salt-and-pepper_noise
https://en.wikipedia.org/wiki/Salt-and-pepper_noise
https://en.wikipedia.org/wiki/Otsu's_method
https://en.wikipedia.org/wiki/Otsu's_method

-120

5400

-140

Frequency [Hz]
o
2
5
g
L
>
3
Intensity [dB]

v
3
S
3

Wb
I
S

4800

-200

400 600 800 1000 1200 1400
Time [s]

Figure 10: Original with the result

5400

Frequency [Hz]
o
4
54
g

@
8
S
8

4800

200 400 600 800 1000 1200 1400
Time [s]

Figure 11: Pre-Processing

5400

Frequency [Hz]
o
4
54
g

v
3
S
3

4800

400 600 800 1000 1200 1400
Time [s]

Figure 12: Normalization

5400

Frequency [Hz]
o
4
54
g

@
8
S
8

4800

800 1000 1200 1400
Time [s]

Figure 13: Filtering

5400

Frequency [Hz]
o
4
54
g

a
<]
e
g

4800

600 800 1000 1200 1400
Time [s]

Figure 14: Segmentation

7 Conclusion

7.1 Achieved goals

Many areas of this project can still be very much
expanded but all the project’s goals were to some
capacity fulfilled. The script makes it possible to
(hopefully easily) process a spectrogram and view
and adjust every step of the way.

7.2 Possible improvements

e Being able to preview the JSON file —
Implementing a way to automatically view
a location in a large spectrogram where seg-
ments were found might be useful. This wasn’t
done due to time constraints.

e Normalizing an image only made out of
noise is problematic — Dividing by a per-
centile will heavily brighten the image and the
segmentation process will find many invalid
segments made out of bright noise values. 1
don’t know how to deal with this. It might
be useful to somehow check if the image is
"consistently random" or just "weak" and just
disregard it. Resolving this issue might not
be practically necessary though.

e Grouping the segments — When processing
large data it might be useful to only see large
groups of segments instead of each individual
one. Multiple attempts were made to group
near segments together, but it turned out to be
more complicated than I expected. For now,
after adding the --group-segments option,
the JSON file gets a groups key, which contains
segments found on a heavily dilated version of
the image. Even though there is no hierarchy
involved, this might work well as a starting
point when searching in a large spectrogram.

References

[1] Antonio Sénchez-Garcia, Patricio Munoz-
Esparza, and José Luis Sancho-Gémez. A
novel image-processing based method for the
automatic detection, extraction and charac-
terization of marine mammal tonal calls, 12
2010. Available at: https://doi.org/10!
1017/S0025315409000927 or online for free.

[2] Opencv documentation. online. OpenCV -
Open Computer Vision Library. 2025. https://
docs.opencv.org/4.x/index.html. [cit. 2025~
01-12].

https://doi.org/10.1017/S0025315409000927
https://doi.org/10.1017/S0025315409000927
https://www.researchgate.net/publication/231846414_A_novel_image-processing_based_method_for_the_automatic_detection_extraction_and_characterization_of_marine_mammal_tonal_calls
https://docs.opencv.org/4.x/index.html
https://docs.opencv.org/4.x/index.html

	Goals
	Input and Output
	Input
	Save the data
	Preview the image

	Processing the signal
	Processing steps
	Spectrogram
	Pre-Processing
	Normalization
	Filtering
	Segmentation

	Viewing the data
	About the code
	Pylint
	Pytest

	Underwater processing example
	Conclusion
	Achieved goals
	Possible improvements

