
Introduction to Artificial Intelligence
Local Search Algorithms and Optimization Problems

Ing. Tomas Borovicka

Department of Theoretical Computer Science (KTI), Faculty of Information Technology (FIT)
Czech Technical University in Prague (CVUT)

BIE-ZUM, LS 2014/15, 4. lecture

https://edux.fit.cvut.cz/courses/BIE-ZUM/

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 1 / 105

https://edux.fit.cvut.cz/courses/BIE-ZUM/


Summary of Previous Lecture
We introduced cost on actions in the state space.

We focused on algorithms searching the shortest path.
Dijkstra’s algorithm

I An algorithm for finding the shortest path between two vertices in a graph.
I Complete and optimal.
I Exponential complexity.

We introduce heuristics and learnt how to use additional information about the
problem to search for a solution more effectively.

Informed Search Algorithms:
Greedy Search

I Algorithm always expands the node with the best (lowest) heuristic value.
I Incomplete and sub-optimal.

A∗ algorithm
I Combination of greedy search and Dijkstra, takes into account the heuristic and

the path cost.
I Complete and optimal.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 2 / 105



Local Search

Local Search

State space search algorithms systematically explore the state space.

For many problems path to the goal is irrelevant and only what matters is the
goal itself.

Local search algorithms operate using a single current configuration
(candidate solution) and search in the neighborhood for better configuration to
move in.

Uses very little memory.

Can find a solution in large or infinite state space.

Typically used for optimization problems, where the goal is to find the best
state according to some objective function.

There is not a goal function or path cost as we defined for ”classical” search
strategies.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 3 / 105



Local Search Optimization Problem

Optimization Problem

Optimization problem

Let f (s) be an objective function

f : Rn → R,

optimization problem is a problem of finding s∗ such that

s∗ = arg max
s∈S

(f (s)),

i.e. searching the configuration that maximize the objective function.

Problems of minimization and maximization of objective function are treated equally
since

arg max
x∈X

(−f (x)) = arg min
x∈X

(f (x)).

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 4 / 105



Local Search State Space Landscape

State Space Landscape

complete local search algorithm always finds a goal if one exists; an optimal
algorithm always finds a global minimum/maximum both “location” (defined by the
state) and “elevation” (defined by the value of the heuristic cost function or objective
function

1D space 2D space 3D space

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 5 / 105



Local Search Objective Function

Objective Function

state s∗ is a global maximum if ∀s ∈ S : f (s∗) ≥ f (s),

if f (s∗) ≥ f (s) only ∀s in some neighborhood of s∗ we call it a local
maximum,

Plateau is a ”flat” area P where ∀s ∈ P : f (s) = const , if there is a
neighboring state s∗ where f (s∗) > f (s) we call it shoulder.

Local maximum

flat local maximum

global maximum

shoulder

state space 

ob
je

ct
iv

e 
fu

nc
tio

n

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 6 / 105



Local Search Local Search Algorithm

Local Search Algorithm

The idea is to find δs such that f (s + δs) ≥ f (s).

Iteratively updates sn+1 = sn + σs

Reduces the problem to a series of 1D line searches.

1 Starts at a random configuration.
2 Repeatedly considers various moves

I accepts some,
I rejects some,

3 Restarts when it gets stuck.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 7 / 105



Local Search Local Search Algorithm

Local Search Pseudo-code

We usually do not have any prior knowledge about the shape of the objective
function, therefore we can not use standard mathematical analysis methods to
find stationary points.

We use following iterative search strategy:

Algorithm 1 General iterative optimization
1: x← randomly generated initial state
2: while xis not good enough ∧ runs too long do
3: y← new candidate state
4: if f (y) > f (x) then
5: x← y
6: end if
7: end while
8: return x

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 8 / 105



Local Search Brute Force Optimization

Brute Force Optimization

Systematically samples all possible solutions and returns the state that
maximizes the objective function.

Feasible only for small problems, since the number of possible states
increases exponentially with the number of dimensions (for continuous
variables the number of possible states is infinite).

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 9 / 105



Local Search Brute Force Optimization

Brute Force Optimization Pseudocode

Algorithm 2 Brute-force optimization on 〈0, 10〉 × 〈0, 10〉 × . . .× 〈0, 10〉
x← (0, 0, . . . , 0)
for all y1 ∈ {0, 0.1, 0.2, . . . , 9.9, 10} do

for all y2 ∈ {0, 0.1, 0.2, . . . , 9.9, 10} do
...
for all yn ∈ {0, 0.1, 0.2, . . . , 9.9, 10} do

if f ((y1, y2, . . . , yn)) > f (x) then
x← (y1, y2, . . . , yn)

end if
end for
...

end for
end for

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 10 / 105



Local Search Random Optimization

Random Optimization

In each iteration algorithm randomly (or according to some distribution
surrounding to current position) samples new candidate solution and moves if
the solution is better.

Algorithm 3 Random optimization on 〈0, 10〉 × 〈0, 10〉 × . . .× 〈0, 10〉
x← (0, 0, . . . , 0)
for i ← 1 . . .max steps do

y← (random(0, 10), random(0, 10), . . . , random(0, 10))
if f (y) > f (x) then

x← y
end if

end for
return x

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 11 / 105



Local Search Hill-climbing

Hill-climbing

Randomly samples candidate solutions in the current state’s neighborhood
and moves to better solution.

I First-choice hill climbing - generates candidates randomly until one that is
better than the current state is found.

I Stochastic climbing - generates several candidates and from those that are
better then the current state randomly choose one to move in.

It continually moves in the direction of increasing objective function (i.e. uphill)
and terminates in the local maximum.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 12 / 105



Local Search Hill-climbing

Hill-climbing Example

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 13 / 105



Local Search Hill-climbing

Hill-climbing: Pseudocode

Algorithm 4 Hill climbing

1: x← random state()
2: i ← 0
3: while ¬good enough(x) ∧ i < max iter do
4: y← random neighbor(x)
5: if f (y) > f (x) then
6: x← y
7: end if
8: i ← i + 1
9: end while

10: return x

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 14 / 105



Local Search Hill-climbing

Hill-climbing: Example of N Queens

The example demonstrates that iterative local search can be used to solve
even a non-numerical problem.

0

-1

-2

-3

-4

-6

-4

-6

-2

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 15 / 105



Local Search Hill-climbing

Steepest Ascent Hill-climbing
Sometimes called greedy local search.
It systematically samples several candidate solutions in current state’s
neighborhood and moves to the solution that maximizes objective function.
Converges faster than random hill-climbing.

Algorithm 5 Steepest ascent Hill-climbing
1: x← random state()
2: i ← 0
3: while ¬good enough(x) ∧ i < max iter do
4: y← random neighbor(x)
5: for i = 2, 3, . . . , k do
6: z ← random neighbor(x)
7: if f(z) > f(y) then
8: y← z
9: end if

10: end for
11: if f(y) > f(x) then
12: x← y
13: end if
14: i ← i + 1
15: end while
16: return xIng. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 16 / 105



Local Search Hill-climbing

Steepest Ascent Hill-climbing Example

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 17 / 105



Local Search Hill-climbing

Hill-climbing: Local Extrems

Any move in a neighborhood of local maximum makes current situation worse.

Algorithm is stuck with nowhere to go.

Necessary to temporarily accept worse solutions. . .

f(y´)<f(x)

f(y)<f(x)

f(y´´)<f(x)

f(y´´´)<f(x)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 18 / 105



Local Search Hill-climbing

Hill-climbing: Plateau
Any move in a neighborhood does not make current situation better.
I ta can be local maximum or shoulder, but where and how far to go?
We can allow sideways, but we should limit the number of moves to not get
stuck.

−5
−4

−3
−2

−1
0

1
2

3
4

5

−5
−4

−3
−2

−1
0

1
2

3
4

5
−1

0

1

2

3

4

5

x
y

z

f(y)<f(x)

f(y´)=f(x) f(y´´)=f(x)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 19 / 105



Local Search Hill-climbing

Hill climbing: Curse of Dimensionality

Adding extra dimensions to Euclidean space increases the volume of the
space exponentially.

I.e. number of states grows exponentially with number of features.

Sampling the neighborhood of some state becomes too difficult.

r

rrr

1-D 2-D 3-D

4-D

r

r

r

r

5-D

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 20 / 105



Local Search Hill-climbing

Size of Neighborhood

In practice, most of the objective functions are noisy and with many local
optimums.

What size of neighborhood?

Too small - we may get stuck in
local optimum.

Too big - we may miss the optimum.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 21 / 105



Local Search Simulated Annealing

Simulated Annealing - Motivation
In metallurgy, annealing is the process used to temper or harden metals and
glass by heating them to a high temperature and then gradually cooling them,
thus allowing the material to reach a low energy crystalline state.
If you let metal cool rapidly, its atoms aren’t given a chance to settle into a
tight lattice and are frozen in a random configuration, resulting in brittle metal.
If we decrease the temperature very slowly, the atoms are given enough time
to settle into a strong crystal.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 22 / 105



Local Search Simulated Annealing

Simulated Annealing

Combination of random hill-climbing search and Metropolis algorithm.
I The idea derived from Metropolis algorithm allows to move with certain

probability to worse than current solution.

1 Sample new candidate from neighborhood of current state (random
hill-climbing).

2 I If f (s′) > f (s) move to the state.
I If f (s′) ≤ f (s) move to the state with probability proportional to:

F ”badness” of the move i.e. δf = (f(s′)− f(s)),
F time, i.e. actual temperature T .

3 When enough iterations have passed without improvement, terminate.

Typical probability function decreases exponentially with δf :

P(s, s′, T ) = e
f(s′)−f(s)

T .

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 23 / 105



Local Search Simulated Annealing

Temperature Schedule
Temperature is the only feature that varies during the calculation, therefore
temperature schedule is one of the most important features in Simulated
Annealing.
Actual temperature influence behavior of the search

I high T: probability of ”locally bad” move is higher (Random Walk),
I low T: probability of ”locally bad” move is lower (Stochastic Hill-Climbing)

Annealing procedure repeatedly lowering the temperature until the system
converges.

Exponential schedule
T (t) = T0α

t

Linear schedule
T (t) = T0 − ηt

Logarithmic schedule

T (t) =
c

log(t + d)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 24 / 105



Local Search Simulated Annealing

Simulated Annealing Example
In this example the objective function is minimized (it is more appropriate for
understanding of Simulated Annealing).

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 25 / 105



Local Search Simulated Annealing

Simulated Annealing Pseudocode

Algorithm 6 Simulated annealing

1: x← random state()
2: t ← high number
3: while t ≥ 0 do
4: y← random neighbor(x)
5: if f (y) > f (x) then
6: x← y
7: else if P(f (x), f (y), t) ≥ random(〈0, 1〉) then
8: x← y
9: end if

10: t ← decrease()
11: end while
12: return x

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 26 / 105



Local Search Tabu Search

Tabu Search

Prevent returning quickly to the same state.

Uses memory structures to maintain a history and prevent recent states being
revisited.

A neighborhood is constructed to identify adjacent solutions. Typically we use
some similarity measures such as

I euclidean or cosine distance for vectors in Rn,
I hamming distance for vectors in {0, 1}n,
I structural similarity for graphs, trees, . . .

The simplest approach of tabu search is to keep ”tabu list”, fixed length queue
of recent candidate solutions. In each iteration adds recent candidate to
queue and drops the oldest one if the list is full. Move to currently tabu’ed
state and it’s neighborhood is not allowed.

However, the effective tabu strategy depends on the particular problem
domain and variety of approaches exists.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 27 / 105



Local Search Tabu Search

Tabu Search Example

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 4. lecture 28 / 105


	Local Search
	Optimization Problem
	State Space Landscape
	Objective Function
	Local Search Algorithm
	Brute Force Optimization
	Random Optimization
	Hill-climbing
	Simulated Annealing
	Tabu Search


