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Summary of Previous Lecture

We introduced local search algorithms.
I Operates using a single current configuration (candidate solution) and search in

the neighborhood for better configuration to move in.

We defined optimization problem.
I The goal is to find the best configuration according to some objective function,

path is irrelevant.

Hill-climbing
I Continually moves in the direction of increasing objective function.

Simulated annealing
I Combination of random hill-climbing search and Metropolis algorithm allows to

move with certain probability to worse than current solution.

Tabu search
I Uses memory structures to maintain a history and prevent recent states being

revisited.
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Evolutionary Computation

Evolutionary Computation

Family of global meta-heuristic or stochastic optimization methods.

Algorithms typically imitate some principle of natural evolution as method to
solve optimization problems, e.g:

I natural selection, survival of the fittest (Charles Darwin),
I theory of genetic inheritance (Gregor Johann Mendel).

Iteratively improves, ”breeds”, population of candidate solutions by selecting a
recombining good quality candidates.

Typically applied for black box problems where optimization is expensive.
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Evolutionary Computation Techniques

Evolutionary Computation Techniques

Gene expression programming

Genetic algorithm

Genetic/Evolutionary programming

Evolution strategy

Swarm intelligence
I Ant colony optimization
I Particle swarm optimization
I Bees algorithm
I Artificial immune systems

Differential evolution

Cultural algorithm

Harmony search

and many others. . .
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Evolutionary Computation Example

Evolution of Chordate phylum

human dog bird

whale
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Evolutionary Computation Practical use

Practical use of Evolutionary Computation Techniques

computer programs, functions fitting,

automotive design, racing cars,

robotics, design and behavior,

hardware design, electronic circuits,

computer gaming,

encryption, code breaking,

molecular design, chemistry and medicine,

finance and investment strategies,

neural networks design,

. . .
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Evolutionary Computation Terminology

Biological Terminology

Living organisms consist of cells. Cell’s nucleus contains chromosomes that
encode its DNA.

A chromosome can be conceptually divided into genes, stretches of DNA
encoding some trait, such as eye color, height etc.

The different possible configurations for a trait are called alleles (e.g. blue,
brown).

Each gene is located at a particular position on the chromosome called locus.
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Evolutionary Computation Terminology

Biological Terminology

The complete collection of genetic material is called organism’s genome.

Genotype refers to a particular set of genes contained in a genome. Two
individuals with identical genomes are said to have the same genotype.

Phenotype is physical (or mental) characteristics of an organism (e.g. eye
color, height, intelligence).

Recombination (or crossover) is sexual reproduction when genes between
two parent chromosomes are exchanged to form an offspring.

Mutation is process in which single nucleotides (elementary bits of DNA) are
changed from parent to offspring (often resulting from copying errors).

The fitness of an organism is typically defined as the probability that the
organism will live to reproduce (viability) or as a function of the number of
offspring the organism has (fertility)
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Evolutionary Computation Terminology

General Evolutionary Computation Scheme

Population

Parents

Selection

Mating

Mutation

Replacement

Initialization

Offsprings
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Evolutionary Computation Terminology

Evolutionary Computation Terminology
The term chromosome refers to a candidate solution to a problem, typically
encoded in a form of binary string.

The genes are either single bits or short blocks of adjacent bits that encode a
particular element of the candidate solution.

The genotype of an individual is simply the configuration that individual’s
chromosome. It is a grammar of a solution.

There is often no notion for phenotype in GA. We can see it as a semantics
of a solution.

An allele is one letter of chosen alphabet (e.g. 0 or 1 for bit)

Mutation randomly changes the allele values of some locations in the
chromosome (e.g. flipping random bit in binary string).

Crossover is a process of exchanging genetic material between two single
chromosome parents, i.e. exchanging part of configuration.

Population in each iteration is called a generation.

The entire set of generations is called a run.
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Genetic Algorithm

Genetic Algorithm

Invented at University of Michigan by John Holland in 1960s.

Probably the most known evolutionary algorithm.

From the beginning the goal was to formally study the phenomenon of natural
adaptation and ability of general incorporation in problem solving.

Result is universal ”black box solver” for optimization using binary strings.

Genetic algorithm

Let x ∈ {0, 1}n be a binary string (chromosome) of a length n and let f (x) be a
fitness function such that

f : {0, 1}n → R,

genetic algorithm solves an optimization problem

x∗ = arg max
x∈{0,1}n

(f (x)).
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Genetic Algorithm

Genetic Algorithm

1 INITIALIZATION generate initialization population.

2 Calculate the fitness of each chromosome in the population.
3 Repeat the following steps until n offsprings have been created:

(I) SELECTION Select a pair of parent chromosomes from the current population,
the probability of selection being an increasing function of fitness.

(II) CROSSOVER With probability pc (the ”crossover probability” or ”crossover
rate”), cross over the pair to form two offspring. If no crossover takes place,
form two offspring that are exact copies of their respective parents.

(III) MUTATION Mutate the offspring at each locus with probability pm (the mutation
probability or mutation rate), and place the resulting chromosomes in the new
population.

4 Replace the current population with the new population.
5 Check stopping criteria (or convergence) and

I terminate, or
I go to step 2.
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Genetic Algorithm Initialization

Population Initialization

Non-informed initialization

Generates population of binary vectors randomly.

Informed initialization

Population is generated with some knowledge.
I Using simple heuristics.
I Seeding with known good quality individuals.

Risk that whole population will be placed in local optima that will be difficult or
impossible to leave using crossover and mutation.
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Genetic Algorithm Selection

Selection

Selection operators chooses good quality chromosomes from the population
to be reproduced. The fitter the chromosome, the more times it is likely to be
selected to reproduce.

Elitism is an addition to selection operator, which forces to retain some
number of best individuals of each generation.

Roulette-wheel selection

Equivalent to giving each individual a
slice of a circular roulette wheel equal in
area to the individual’s fitness.

Pi(x) =
fi(x)∑µ
j=1 fj(x) f1

f2

fμ

Tournament selection

Randomly pick a small subset of chromosomes from the population and the
chromosome with highest fitness becomes a parent.

Not need to sort population by fitness!
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Genetic Algorithm Crossover

Crossover

Crossover operator combine or exchanges subparts of two chromosomes.

Depends greatly on the problem and the encoding strategy.

For some problems (with specific encoding) is even not used and evolution
depends only on mutation.
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Genetic Algorithm Mutation

Mutation

Mutation operator randomly flips some of the bits in a chromosome.

Mutation can occur at each bit position in a string with some probability pm,
usually very small (e.g., 0.001).

01

1 0 0 1 1 0 1 1 1 0 0 1

1 0 1 1 0 1 1 0 0 1

Algorithm 1 bitflip mutation(x)
for i ← 1 to n do

if random(〈0, 1)) < pm then
x[i]← ¬x[i]

end if
end for
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Genetic Algorithm Pseudocode

Genetic Algorithm Pseudocode

Algorithm 2 Genetic Algorithm (GA)
P ← {}
for i ← 1 to µ do

x← random individual()
P ← P ∪ {(x, f (x))}

end for
repeat
O ← {}
for i ← 1 to µ

2 do
p1 ← selection(P)
p2 ← selection(P)
(o1, o2)← crossover(p1, p2)
õ1 ← mutate(o1)
õ2 ← mutate(o2)
O ← O ∪ {(õ1, f (õ1)), (õ2, f (õ2))}

end for
P ← O

until termination condition is met
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Genetic Algorithm GA Parameters

Parameters of Genetic Algorithm

Initial population.

Size of the population.

Mutation rate.

Crossover rate.

Number of generations.

Moreover we have to decide about

Encoding strategy.

Fitness function.

Crossover operators.

Elitism.

etc. . .
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Genetic Algorithm Example

Knapsack Problem

Given

knapsack with weight limit W ,

set of items T = {t1, t2, . . . , tn} with weight w(ti) and value v(ti).

The goal is to find a subset Z ⊆ T with maximal possible value so that the total
weight is less than or equal to a given limit

arg max
Z⊆T

∑
z∈Z

v(z) t.ž.
∑
z∈Z

w(z) ≤ W .

The knapsack problem is NP-hard, it means it does not exist an algorithm that
solves the problem in polynomial time.
However, we can find near-optimal solution with genetic algorithm.
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Genetic Algorithm Example

Knapsack Problem

A chromosome can be represented in a binary string (array) having size equal
to the number of the items.

Each element from this array denotes whether an item is included in the
knapsack (”1”) or not (”0”).

Trivial fitness:

f (x) =

{∑
z∈{tj |xj=1} v(z), pokud

∑
z∈{tj |xj=1} w(z) ≤ W ,

0, pokud
∑

z∈{tj |xj=1} w(z) > W

Can we do it better?
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Genetic Programming

Genetic Programming

Invented at Sanford University by J.R. Koza in 1960s.

Motivation was general automatic programming.

First use of genetic programming was to evolve Lisp programs to perform
various tasks.

More flexible then fixed chromosome, size of instance is part of evolution.

Genotype is represented in a form of syntax tree.
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Genetic Programming Syntax Tree

Syntax Tree
Syntax tree consists of :

terminals (leafs) – T
I inputs of program, independent variables

functions (internal nodes) – F
I e.g. arithmetic operations, algebraic functions, logic functions etc.

The sets of available functions and terminals form the primitive set of the
genetic programming system.
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Genetic Programming Initialization

Population Initialization
Typically, individuals in the initial population are generated randomly.
However, since it is not so trivial (such as generate random binary string)
number of different approaches exist.
First defined (and also simplest) methods are:

I GROW
F generated tree has depth d ≤ Dmax ,
F nodes in depth d < Dmax are randomly chosen from F ∪ T ,
F nodes in depth d = Dmax are randomly chosen from T .

I FULL
F generated tree has depth d = Dmax ,
F nodes in depth d < Dmax are randomly chosen from F ,
F nodes in depth d = Dmax are randomly chosen from T .

I Ramped half-and-half
F half of the initial population is constructed using full and half using grow.

I PTC1/2 (Probabilistic Tree-Creation)
F generates tree with user defined expected size Etree,
F to each function fi ∈ F and terminal ti ∈ T are assigned probabilities pfi to be

chosen fi when function is needed respectively pti to be chosen ti when terminal
is needed.
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Genetic Programming Recombination

Subtree Crossover
Given two parents, subtree crossover randomly selects a crossover point in
each parent tree.

Two offsprings are created by replacing the subtrees rooted at the crossover
points of both parents.

Parent #1 Parent #2

Offspring #1 Offspring #2

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 5. lecture 24 / 1



Genetic Programming Mutation

Mutation

random 
subtree

Subtree mutation

random node 
of the same arity

Point mutation
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Genetic Programming Mutation

Mutation

random
terminal

Shrink mutation

random node
of the same arity

Permutation mutation

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 5. lecture 26 / 1



Genetic Programming Example

Example

Goal: Evolve robots driving on roads. Fitness is the average speed.

http://www.youtube.com/watch?v=lmPJeKRs8gE

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2014/15, 5. lecture 27 / 1

http://www.youtube.com/watch?v=lmPJeKRs8gE


Evolutionary Programming

Evolutionary Programming

Invented at University of California by L.J.Fogel in 1960s.

Motivation was to generate alternative approach to artificial intelligence.

One population of solutions, reproduction is only by mutation.

Early versions of EP applied to the evolution of transition table of finite state
machines.
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Evolutionary Programming Finite State Machine

Finite State Machine

State machine is described by:

initial and final state,

set of states,

transition table.
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Evolutionary Programming Mutation

Mutation

Five possible modes of mutation of state machine:

add a state,

delete a state,

change the start state,

change an output symbol,

change a state transition.
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Evolution Strategies

Evolution Strategies

Invented at Technische Universität Berlin by I. Rechenberg and H.P. Schwefel
in 1960s.

Based on the concept of the ”evolution of evolution”.

Each individual is represented by its genotype and strategy parameters.

Both genotype and strategy parameters are evolved.

Mutated individuals are only accepted if fitness of parent is improved.
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Evolution Strategies Selection

Selection

First version (1 + λ)-ES,
I one parent generates λ offsprings,
I the best of the offsprings becomes parent of next generation,
I note the similarity with hill-climbing!

Advanced version (µ+ λ)-ES and (µ, λ)-ES
I µ parents generates λ offsprings,
I (µ+ λ)-ES selects from these µ+ λ individuals µ best to the next generation.
I (µ, λ)-ES selects to the next generation µ best only from offsprings.
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Evolution Strategies Mutation

Mutation
Gaussian mutation - to each individual is added Gaussian distributed noise.

x′(t) = x(t) + N(0, σ(t))

Adaptation of strategy parameters
I Based on the 1/5 success rule

F σ is increased if the relative frequency of successful mutations over a certain
period is larger than 1/5

F otherwise σ is decreased

- 3 - 2 - 1φ
μ
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Evolution Strategies Mutation

Self Adaptation

Each individual is represented by its genotype and strategy parameters

X (t) = (x(t), σ(t))

x(t) ∈ Rn represents the genotype,
σ represents the deviation strategy parameter vector.

Both genotype and strategy parameters are evolved.

Strategy parameters are self-adapted to determine
I best search direction, and
I maximum step size per dimension.
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Evolution Strategies Crossover

Crossover

In the first version offspring was generated only through mutation.

Newer versions defined crossover.
I Discrete – two parents are randomly selected and recombined using discrete,

multipoint crossover.
I Intermediate – the offspring is a weighted average of the parents.
I Arithmetic – the offspring is arithmetic average of the parents.

Extension (µ/ρ +, λ)-ES indicates that ρ parents are used per application of
the crossover operator,

I ρ = 1 . . . standard (µ +, λ)-ES,
I ρ = 2 . . . local crossover,
I ρ < ρ ≤ µ . . . global crossover.
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