
Introduction to Artificial Intelligence
Planning

Ing. Tomas Borovicka

Department of Theoretical Computer Science (KTI), Faculty of Information Technology (FIT)
Czech Technical University in Prague (CVUT)

BIE-ZUM, LS 2013/14, 6. lecture

https://edux.fit.cvut.cz/courses/BIE-ZUM/

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 1 / 33

https://edux.fit.cvut.cz/courses/BIE-ZUM/

Summary of Previous Lecture

Evolutionary Computation
I Family of global meta-heuristic or stochastic optimization methods.
I Algorithms typically imitate some principle of natural evolution as method to

solve optimization problems.

I Genetic Algorithm
F Universal ”black box” solver for optimization using binary strings.

I Genetic Programming
F Approach for general automatic programming.
F Originally used to evolve Lisp programs.

I Evolutionary Programming
F Motivation was to generate alternative approach to artificial intelligence.
F Early versions applied to the evolution of transition table of finite state machines.

I Evolution Strategies
F Based on the concept of the ”evolution of evolution”.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 2 / 33

Introduction General Problem Solving

General Problem Solving

Traditional approach to solve a problem:

Problem −→ Human −→ Design of special algorithm −→ Solution

Disadvantages:
I design and implementation of specialized algorithm is expensive,
I optimization and tuning of the algorithm is time consuming.

General Problem Solving:

Problem −→ Human −→ Problem formalization −→ Solver −→ Solution

I The user must only formalize the problem.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 3 / 33

Introduction General Problem Solving

General Problem Solving

General principle:

Problem −→ Model −→ Language −→ Solver −→ Solution

1 Having a problem P,

2 choose a model M,

3 choose a language L for definition of model M,

4 choose a solver S for solving problems in L,

5 leave solver automatically solve S(L(P)),

6 interpret S(L(P)) in the context of P.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 4 / 33

Planning

Automatic Planning

Sliding puzzles,

Rubik’s cube,

Blocks world,

All these problems can be simply defined using state space, where each state
represents some structured configuration and actions make changes in this
configuration.

5

3

4

7

1

15

9

13

10

6

8

2

14

12

11

5

3

4

7

1

15

9

13

10

6

8

2

14

12

11

5

3

4

7

1

15

9

13

10

6

8

2

14

12

11

5

3

4

7

1

15

9

13

10

6

8

2

14

12

11

5

3

4

7

1

15

9

13

10

6

8

2

14

12

11

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 5 / 33

Planning

Planning vs Search

Planning problem is essentially search problem. However there are differences that
make reasonable to treat them in a different way.

Search Planning

States data structures logical sentences
Actions code preconditions / effects

Goal code logical sentences
Plan sequence of actions constrains on actions

The main benefits are:

Unified action and goal representation (logical language).

Independent solution of sub-goals .

Flexible construction of solution, relax requirement for sequential construction.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 6 / 33

Planning Classical Planning

Classical Planning

Assumptions are:

1 Environment is deterministic

2 Environment is observable

3 Environment is static (in response to the agent’s actions)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 7 / 33

Planning Planning Problem

Planning Problem

Objective is to get tea, biscuits and a book.

Initial state:
The agent is at home without tea, biscuits, book.

Goal state:
The agent is at home with tea, biscuits, book.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 8 / 33

Planning Planning Problem

States

States can be represented by predicates such as:

At(x) - agent is at a specific position x.

Have(y) - agent has an item y.

Sells(x,y) - some location x sells item y.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 9 / 33

Planning Planning Problem

Actions

Go(y) - agent goes to y,
causes At(y) to be true.

Buy(z) - agent buys z,
causes Have(z) to be true.

Steal(z) - agent steals z,
causes Have(z) to be true.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 10 / 33

Planning Planning Problem

Problem Representation

Initially attempted to represent planning problems through variants of
predicate calculus, like first order logic and propositional calculus.

Initial State: We are home we do not have tea, we do not have biscuits and
we do not have a book.

At(Home, s0) ∧ ¬Have(Tea, s0) ∧ ¬Have(Biscuits, s0) ∧ ¬Have(Book , s0)

Goal State: There exists some state where we are at home, we have a tea,
we have biscuits and we have a book.

∃sAt(Home, s) ∧ Have(Tea, s) ∧ Have(Biscuits, s) ∧ Have(Book , s)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 11 / 33

Planning Planning Problem

Operators

∀a, s Have(Tea,Result(a, s)) ⇐⇒ [(a = Buy(Tea) ∧ At(TeaShop, s))

∧ (Have(Tea, s) ∧ a 6= Drop(Tea))]

Result(a,s) names the situation resulting from executing the action a in the
situation s.

Drop(z) - agent drops z,
I causes Have(z) to be false.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 12 / 33

Planning Planning Problem

The frame problem

We have to write rules for all things that does not change.

Everything that just will not change, we have to explicitly specify in predicate
logic to say that it will not change.

Makes representation of a problem very complex.

Resolution: If very few things are changing at a time, then, it is always easier to
model it as changes rather than anything else.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 13 / 33

Planning STRIPS

STRIPS

STanford Research Institute Problem Solver

A STRIPS instance is composed of:

An initial state.

The goal states.

The set of actions (operators) described by
I preconditions - must be satisfied before the action is performed.
I effects - established after the action is performed.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 14 / 33

Planning STRIPS

STRIPS

STRIPS

STRIPS instance is a quadruple (P,A, I,G), where

P is a set of conditions,

A is a set of actions (operators) described by precond(a) ⊆ P and
effect(a) ⊆ P (in original version add(a) ⊆ P, del(a) ⊆ P),

I ⊆ P is initial state,

G ⊆ P is goal state.

Planning problem 6= state space.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 15 / 33

Planning STRIPS

STRIPS: Block World Example 1

?

P = {red-on-ground, red-on-top, red-on-green, red-on-blue,

green-on-ground, green-on-top, green-on-red, green-on-blue,

blue-on-ground, blue-on-top, blue-on-red, blue-on-green }
A = {move-red-ground-green,move-red-ground-blue,move-red-green-blue,

move-red-blue-green,move-red-green-ground,move-red-blue-ground,

move-green-ground-red,move-green-ground-blue, . . . }
I = {red-on-green, green-on-ground, blue-on-top, blue-on-red }
G = {green-on-red, red-on-ground, blue-on-top, blue-on-green }

move-blue-ground-green)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 16 / 33

Planning STRIPS

STRIPS: Block World Example 1

red-on-ground = 0
red-on-top = 0
red-on-green = 1
red-on-blue = 0

green-on-ground = 1
green-on-top = 0
green-on-red = 0
green-on-blue = 0

blue-on-ground = 0
blue-on-top = 1
blue-on-red = 1
blue-on-green = 0

red-on-ground = 0
red-on-top = 1
red-on-green = 1
red-on-blue = 0

green-on-ground = 1
green-on-top = 0
green-on-red = 0
green-on-blue = 0

blue-on-ground = 1
blue-on-top = 1
blue-on-red = 1
blue-on-green = 0

move-blue-red-ground
 pre = { blue-on-top, blue-on-red }
 add = { blue-on-ground,
 red-on-top }
 del = { blue-on-red }

move-blue-ground-red
 pre = { blue-on-ground,
 blue-on-top,
 red-on-top }
 add = { blue-on-red }
 del = { blue-on-ground,
 red-on-top }

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 17 / 33

Planning STRIPS

Block World Example 2

?

Objects : U = {R,G,B},
Predicates: P = {on, on-ground, on-top, distinct},

Problem in STRIPS (P′,A, I,G):

P′ = {on(x, y), on-ground(x), on-top(x), distinct(x, y) | x, y ∈ {R,G,B} },
A = {move(what, from, to), from-ground(what, to), to-ground(what, from) }
I = {on-ground(G), on(G,R), on(R,B), on-top(B) }

∪ {distinct(x, y) | x, y ∈ {R,G,B}, x 6= y}
G = {on-ground(R), on(R,G), on(G,B), on-top(B) },

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 18 / 33

Planning STRIPS

STRIPS: Block World Example 2

?

For each action we define preconditions and effects (add and del):
move(what, from, to)

I pre(move) = {on(from,what), on-top(what), on-top(to), distinct(what, to)},
I add(move) = {on(to,what), on-top(from)},
I del(move) = {on(from,what), on-top(to)},

from-ground(what, to)
I pre(from-ground) = {on-ground(what), on-top(what), on-top(to)}
I add(from-ground) = {on(to,what)}
I del(from-ground) = {on-ground(what), on-top(to)}

to-ground(what, from)
I pre(to-ground) = {on(from,what), on-top(what)}
I add(to-ground) = {on-ground(what), on-top(from)}
I del(to-ground) = {on(from,what)}

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 19 / 33

Planning STRIPS

STRIPS: Block World Example 2

on-ground(green)
on(green,red)
on(red,blue)
on-top(blue)

distinct(red,green)
distinct(green,red)
...

to-ground(what,from)
[what:=blue,from:=red]
 pre = { on(from,what),
 on-top(what) }
 add = { on-ground(what),
 on-top(from) }
 del = { on(from,what) }

from-ground(what,to)
[what:=blue,to:=red]
 pre = { on-ground(what),
 on-top(what),
 on-top(to) }
 add = { on(to,what) }
 del = { on-ground(what),
 on-top(to) }

on-ground(green)
on(green,red)
on-top(blue)
on-ground(blue)
on-top(red)

distinct(red,green)
distinct(green,red)
...

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 20 / 33

Planning STRIPS

Representing States

States are represented by positive function-free literals (atoms).
Initial:

At(Home) ∧ Sells(BS,Book) ∧ Sells(TS, Tea) ∧ Sells(TS,Biscuits)

Goal:

At(Home) ∧ Have(Tea) ∧ Have(Biscuits) ∧ Have(Book)

Closed World: unmentioned literals are false.

In later definition states can also contain variables

At(x) ∧ Sells(x, Tea).

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 21 / 33

Planning STRIPS

Representing Actions

Action description - serves as a name.

Precondition - a conjunction of positive literals.

Effect - a conjunction of positive and negative literals.
I The original version had an add list and del list

(effect of P ∧ ¬Q means add P, delete Q)

Op(ACTION : Go(There),

PRECOND : At(here) ∧ Path(here, there),

EFFECT : At(there) ∧ ¬At(here))

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 22 / 33

Planning STRIPS

Representing Plans

A set o steps, where each step is one of the operators of the problem.

A set of step ordering constrains. Each ordering constrain is of the form
Si ≺ Sj indicating Si must occur sometime before Sj

A set of variable binding constraints of the form v = x where v is a variable in
some step, and x is either a constant or another variable.

A set of causal links written as S
c−→ S′ indicating S satisfies the precondition

c for S′.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 23 / 33

Planning STRIPS

Example

Actions:

Op(ACTION : RightShoe,

PRECONDITION : RightSockOn,

EFECT : RightShoeOn)

Op(ACTION : RightSock ,

EFECT : RightShoeOn)

Op(ACTION : LeftShoe,

PRECONDITION : LeftSockOn,

EFECT : LeftShoeOn)

Op(ACTION : LeftShoe,

EFECT : LeftShoeOn)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 24 / 33

Planning STRIPS

Example: Initial Plan

Plan(

STEPS : {
S1 : Op(ACTION : start),

S2 : Op(ACTION : finish,

PRECOND : RightShoeOn ∧ LeftShoeOn)},
ODRERINGS : {S1 ≺ S2},
BINDINGS : {},
LINKS : {})

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 25 / 33

Planning STRIPS

Partial Order Planning

We add steps from the given set of actions in order to satisfy not achieved
preconditions.

We finish when all preconditions of each step has been satisfied.

Any topologically ordered sequence of actions is solution.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 26 / 33

Planning STRIPS

Example

Initial State:

Op(ACTION : Start,

EFFECT : At(Home) ∧ Sells(BS,Book)

∧ Sells(TS, Tea) ∧ Sells(TS,Biscuits))

Goal:

Op(ACTION : Finish,

PRECOND : At(Home) ∧ Have(Tea)

∧ Have(Biscuits) ∧ Have(Book)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 27 / 33

Planning STRIPS

Example

Actions

Op(ACTION : Go(There),

PRECOND : At(here),

EFFECT : At(there) ∧ ¬At(here))

Op(ACTION : Buy(x),

PRECOND : At(store) ∧ Sells(store, x),

EFFECT : Have(x))

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 28 / 33

Planning STRIPS

Partial Order Planning: Pseudo-code Sketch

Algorithm 1 Partial Order Planning (POP)
1: plan← INIT MINIMAL PLAN(initial ,goal)
2: loop
3: if SOLUTION(plan) then return plan
4: end if
5: Sneed , c ← SELECT SUBGOAL(plan)
6: CHOOSE OPERATOR(plan,OPERATORS,Sneed ,c)
7: RESOLVE THREATS(plan)
8: end loop

Algorithm 2 Partial Order Planning (POP)
1: function SELECT SUBGOAL(plan)
2: pick a step Sneed ∈ STEPS with a precondition c that has not been achieved
3: return Sneed , c
4: end function

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 29 / 33

Planning STRIPS

Algorithm 3 Partial Order Planning (POP)
1: function CHOOSE OPERATOR(plan,OPERATORS,Sneed , c)
2: choose s step Sadd ∈ OPERATORS ∪ STEPS that has c as an effect
3: if Sadd = {} then FAIL

4: end if
5: add the causal link Sadd

c−→ Sneed to LINKS
6: add the ordering constrain Sadd ≺ Sneed to ORDERINGS
7: if Sadd is newly added step from operators then
8: add Sadd to STEPS
9: add Sstart ≺ Sadd ≺ Sgoal to ORDERINGS

10: end if
11: end function

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 30 / 33

Planning STRIPS

Algorithm 4 Partial Order Planning (POP)
1: function RESOLVE THREATS(plan)
2: for all Sthreat that threatens a link Si

c−→ Sj ∈ LINKS do
3: Promote: add Sthreat ≺ Si or Demote: add Sj ≺ Sthreat

4: if ¬ CONSISTENT(plan) then FAIL

5: end if
6: end for
7: end function

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 31 / 33

Planning STRIPS

Partially Instantiated Operators

So far we have not mentioned anything about binding constraints.

Should an operator that has the effect, say, ¬At(x), be considered a threat to
the condition At(Home)?

Dealing with possible threats:

Resolve with an equality constraint,
I bind x with something that resolves the threat (e.g. x = TS)

Resolve with an inequality constrain.
I Add constrain that x can not be bound to Home.

Resolve later.
I Ignore possible threats. If x = Home is added later into the plan, try to resolve

by promotion or demotion.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 32 / 33

Planning STRIPS

Algorithm 5 Partial Order Planning (POP)
1: function CHOOSE OPERATOR(plan,OPERATORS,Sneed , c)
2: choose s step Sadd ∈ OPERATORS ∪ STEPS that has c as an effect such

that u = UNIFY(c,c’,BINDINGS)
3: if Sadd = {} then FAIL

4: end if
5: add u to BINDINGS
6: add the causal link Sadd

c−→ Sneed to LINKS
7: add the ordering constrain Sadd ≺ Sneed to ORDERINGS
8: if Sadd is newly added step from operators then
9: add Sadd to STEPS

10: add Sstart ≺ Sadd ≺ Sgoal to ORDERINGS
11: end if
12: end function

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 33 / 33

	Introduction
	General Problem Solving

	Planning
	Classical Planning
	Planning Problem
	STRIPS

