Introduction to Artificial Intelligence

Planning

Ing. Tomas Borovicka

Department of Theoretical Computer Science (KTI), Faculty of Information Technology (FIT) Czech Technical University in Prague (CVUT)

BIE-ZUM, LS 2013/14, 6. lecture

https://edux.fit.cvut.cz/courses/BIE-ZUM/

Summary of Previous Lecture

- Evolutionary Computation
- Family of global meta-heuristic or stochastic optimization methods.
- Algorithms typically imitate some principle of natural evolution as method to solve optimization problems.
- Genetic Algorithm
* Universal "black box" solver for optimization using binary strings.
- Genetic Programming
\star Approach for general automatic programming.
* Originally used to evolve Lisp programs.
- Evolutionary Programming
\star Motivation was to generate alternative approach to artificial intelligence.
\star Early versions applied to the evolution of transition table of finite state machines.
- Evolution Strategies
\star Based on the concept of the "evolution of evolution".

General Problem Solving

- Traditional approach to solve a problem:

Problem \longrightarrow Human \longrightarrow Design of special algorithm \longrightarrow Solution

- Disadvantages:
- design and implementation of specialized algorithm is expensive,
- optimization and tuning of the algorithm is time consuming.
- General Problem Solving:

Problem \longrightarrow Human \longrightarrow Problem formalization \longrightarrow Solver \longrightarrow Solution

- The user must only formalize the problem.

General Problem Solving

General principle:

$$
\text { Problem } \longrightarrow \text { Model } \longrightarrow \text { Language } \longrightarrow \text { Solver } \longrightarrow \text { Solution }
$$

(1) Having a problem P,
(2) choose a model M,
(3) choose a language L for definition of model M,
(9) choose a solver S for solving problems in L,
(6) leave solver automatically solve $S(L(P))$,
(0) interpret $S(L(P))$ in the context of P.

Automatic Planning

- Sliding puzzles,
- Rubik's cube,
- Blocks world,

All these problems can be simply defined using state space, where each state represents some structured configuration and actions make changes in this configuration.

Planning vs Search

Planning problem is essentially search problem. However there are differences that make reasonable to treat them in a different way.

	Search	Planning
States	data structures	logical sentences
Actions	code	preconditions / effects
Goal	code	logical sentences
Plan	sequence of actions	constrains on actions

The main benefits are:

- Unified action and goal representation (logical language).
- Independent solution of sub-goals .
- Flexible construction of solution, relax requirement for sequential construction.

Classical Planning

Assumptions are:

- Environment is deterministic
(2) Environment is observable
- Environment is static (in response to the agent's actions)

Planning Problem

Objective is to get tea, biscuits and a book.

- Initial state:

The agent is at home without tea, biscuits, book.

- Goal state:

The agent is at home with tea, biscuits, book.

States

States can be represented by predicates such as:

- At (x) - agent is at a specific position x.
- Have(y) - agent has an item y.
- Sells(x, y) - some location x sells item y .

Actions

- Go(y) - agent goes to y, causes $\operatorname{At}(y)$ to be true.
- Buy(z) - agent buys z, causes Have(z) to be true.
- Steal(z) - agent steals z, causes Have(z) to be true.

Problem Representation

- Initially attempted to represent planning problems through variants of predicate calculus, like first order logic and propositional calculus.
- Initial State: We are home we do not have tea, we do not have biscuits and we do not have a book.

At $\left(\right.$ Home,$\left.s_{0}\right) \wedge \neg \operatorname{Have}\left(\right.$ Tea, $\left.s_{0}\right) \wedge \neg \operatorname{Have}\left(\right.$ Biscuits, $\left.s_{0}\right) \wedge \neg \operatorname{Have}\left(\right.$ Book, $\left.s_{0}\right)$

- Goal State: There exists some state where we are at home, we have a tea, we have biscuits and we have a book.

$$
\exists s A t(H o m e, s) \wedge \operatorname{Have}(\text { Tea, } s) \wedge \operatorname{Have}(\text { Biscuits, s }) \wedge \operatorname{Have}(\text { Book }, s)
$$

Operators

$$
\begin{aligned}
\forall a, s \operatorname{Have}(\text { Tea, Result }(a, s)) \Longleftrightarrow & {[(a=\operatorname{Buy}(\text { Tea }) \wedge A t(\text { TeaShop }, s))} \\
& \wedge(\operatorname{Have}(\text { Tea }, s) \wedge a \neq \operatorname{Drop}(\text { Tea }))]
\end{aligned}
$$

- Result(a,s) names the situation resulting from executing the action a in the situation s.
- Drop(z) - agent drops z,
- causes Have(z) to be false.

The frame problem

- We have to write rules for all things that does not change.
- Everything that just will not change, we have to explicitly specify in predicate logic to say that it will not change.
- Makes representation of a problem very complex.

Resolution: If very few things are changing at a time, then, it is always easier to model it as changes rather than anything else.

STRIPS

- STanford Research Institute Problem Solver

A STRIPS instance is composed of:

- An initial state.
- The goal states.
- The set of actions (operators) described by
- preconditions - must be satisfied before the action is performed.
- effects - established after the action is performed.

STRIPS

STRIPS

STRIPS instance is a quadruple (P, A, \mathcal{I}, G), where

- P is a set of conditions,
- A is a set of actions (operators) described by precond $(a) \subseteq P$ and $\operatorname{effect}(a) \subseteq P$ (in original version add $(a) \subseteq P, \operatorname{del}(a) \subseteq P)$,
- $\mathcal{I} \subseteq P$ is initial state,
- $G \subseteq P$ is goal state.

Planning problem \neq state space.

STRIPS: Block World Example 1

$P=\{$ red-on-ground, red-on-top, red-on-green, red-on-blue, green-on-ground, green-on-top, green-on-red, green-on-blue, blue-on-ground, blue-on-top, blue-on-red, blue-on-green \}
$A=\{$ move-red-ground-green, move-red-ground-blue, move-red-green-blue, move-red-blue-green, move-red-green-ground, move-red-blue-ground, move-green-ground-red, move-green-ground-blue, ... \}
$\mathcal{I}=\{$ red-on-green, green-on-ground, blue-on-top, blue-on-red $\}$
$G=\{$ green-on-red, red-on-ground, blue-on-top, blue-on-green $\}$
move-blue-ground-green)

STRIPS: Block World Example 1

Block World Example 2

- Objects : $U=\{R, G, B\}$,
- Predicates: $P=\{$ on, on-ground, on-top, distinct $\}$,

Problem in STRIPS $\left(P^{\prime}, A, \mathcal{I}, G\right)$:

$$
\begin{aligned}
P^{\prime}= & \{\text { on }(x, y), \text { on-ground }(x), \text { on-top }(x), \operatorname{distinct}(x, y) \mid x, y \in\{R, G, B\}\}, \\
A= & \{\text { move }(\text { what, from, to }), \text { from-ground }(\text { what, to }), \text { to-ground(what, from })\} \\
\mathcal{I}= & \{\operatorname{on-ground}(G), \text { on }(G, R), \operatorname{on}(R, B), \text { on-top }(B)\} \\
& \cup\{\operatorname{distinct}(x, y) \mid x, y \in\{R, G, B\}, x \neq y\} \\
G= & \{\operatorname{on-ground}(R), \text { on }(R, G), \operatorname{on}(G, B), \operatorname{on-top}(B)\},
\end{aligned}
$$

STRIPS: Block World Example 2

For each action we define preconditions and effects (add and del):

- move(what, from, to)
- pre $($ move $)=\{$ on(from, what $)$, on-top(what), on-top(to), distinct(what, to $)\}$,
- $\operatorname{add}($ move $)=\{$ on(to, what $)$, on-top $($ from $)\}$,
- $\operatorname{del}($ move $)=\{o n($ from, what $)$, on-top(to) $\}$,
- from-ground(what, to)
- pre(from-ground) $=\{$ on-ground(what), on-top(what), on-top(to) $\}$
- $\operatorname{add}($ from-ground $)=\{$ on(to, what $)\}$
- del(from-ground) $)=\{$ on-ground(what), on-top(to) $\}$
- to-ground(what, from)
- pre(to-ground) $=\{$ on(from, what), on-top(what) $\}$
- $\operatorname{add}($ to-ground $)=\{$ on-ground(what) , on-top(from) $\}$
- $\operatorname{del}($ to-ground $)=\{$ on(from, what $)\}$

STRIPS: Block World Example 2

on-ground(green)
on(green, red)
on(red, blue)
on-top(blue)
distinct(red,green)
distinct(green, red)

from-ground(what, to)
[what:=blue,to:=red]
pre $=\{$ on-ground(what),
on-top(what),
on-top(to) \}
add $=\{$ on(to, what) \}
del $=\{$ on-ground(what),
on-top(to) \}
on-ground(green)
on(green, red)
on(red,blue)
on-top(blue)
distinct(red, green)
distinct(green, red)

```
to-ground(what, from)
```

to-ground(what, from)
[what:=blue,from:=red]
[what:=blue,from:=red]
pre $=\{$ on(from, what) ,
pre $=\{$ on(from, what) ,
on-top(what) \}
on-top(what) \}
add $=\{$ on-ground(what),
add $=\{$ on-ground(what),
on-top(from) \}
on-top(from) \}
del $=\{$ on(from,what) $\}$

```
    del \(=\{\) on(from,what) \(\}\)
```



```
on-ground(green)
on(green,red)
on-top(blue)
on-ground(blue)
on-top(red)
distinct(red,green)
distinct(green,red)
```


Representing States

- States are represented by positive function-free literals (atoms). Initial:

At (Home $) \wedge$ Sells $(B S$, Book $) \wedge$ Sells $(T S$, Tea $) \wedge$ Sells $($ TS, Biscuits $)$
Goal:

$$
\text { At }(\text { Home }) \wedge \text { Have }(\text { Tea }) \wedge \text { Have }(\text { Biscuits }) \wedge \text { Have }(\text { Book })
$$

- Closed World: unmentioned literals are false.
- In later definition states can also contain variables

$$
\operatorname{At}(x) \wedge \operatorname{Sells}(x, T e a)
$$

Representing Actions

- Action description - serves as a name.
- Precondition - a conjunction of positive literals.
- Effect - a conjunction of positive and negative literals.
- The original version had an add list and del list (effect of $P \wedge \neg Q$ means add P, delete Q)

$$
\begin{aligned}
& \text { Op }(\text { ACTION : Go(There }), \\
& \quad \text { PRECOND : At } \text { (here }) \wedge \text { Path }(\text { here }, \text { there }), \\
& \text { EFFECT : At }(\text { there }) \wedge \neg A t(\text { here }))
\end{aligned}
$$

Representing Plans

- A set o steps, where each step is one of the operators of the problem.
- A set of step ordering constrains. Each ordering constrain is of the form $S_{i} \prec S_{j}$ indicating S_{i} must occur sometime before S_{j}
- A set of variable binding constraints of the form $v=x$ where v is a variable in some step, and x is either a constant or another variable.
- A set of causal links written as $S \xrightarrow{c} S^{\prime}$ indicating S satisfies the precondition c for S^{\prime}.

Example

Actions:

Op(ACTION : RightShoe, PRECONDITION : RightSockOn,
EFECT : RightShoeOn)
Op(ACTION: RightSock,
EFECT : RightShoeOn)
Op (ACTION : LeftShoe, PRECONDITION : LeftSockOn, EFECT : LeftShoeOn)
Op(ACTION : LeftShoe, EFECT : LeftShoeOn)

Example: Initial Plan

```
Plan(
    STEPS : \{
        S1: Op(ACTION : start),
        S2: Op(ACTION : finish,
        PRECOND: RightShoeOn \(\wedge\) LeftShoeOn) \},
    ODRERINGS : \(\left\{S_{1} \prec S_{2}\right\}\),
    BINDINGS : \{\},
    LINKS : \{\})
```


Partial Order Planning

- We add steps from the given set of actions in order to satisfy not achieved preconditions.
- We finish when all preconditions of each step has been satisfied.
- Any topologically ordered sequence of actions is solution.

Example

- Initial State:

> Op $($ ACTION : Start, \quad EFFECT : At $($ Home $) \wedge$ Sells $($ BS, Book $)$ \wedge Sells $(T S$, Tea $) \wedge$ Sells $(T S$, Biscuits $))$

- Goal:

Op(ACTION : Finish, PRECOND : At (Home) \wedge Have (Tea)
\wedge Have(Biscuits) \wedge Have(Book)

Example

- Actions

> Op $($ ACTION : Go(There $)$, \quad PRECOND : At (here $),$ \quad EFFECT : At $($ there $) \wedge \neg A t($ here $))$

Op(ACTION : Buy (x), PRECOND : At (store) \wedge Sells(store, x), EFFECT: $\operatorname{Have}(x))$

Partial Order Planning: Pseudo-code Sketch

```
Algorithm 1 Partial Order Planning (POP)
    1: plan }\leftarrow\mathrm{ INIT_MINIMAL_PLAN(initial,goal)
    2: loop
    3: if SOLUTION(plan) then return plan
    4: end if
    5: }\quad\mp@subsup{S}{need}{},c\leftarrow\mathrm{ SELECT_SUBGOAL(plan)
    6: CHOOSE_OPERATOR(plan,OPERATORS, S Seed,c)
    7: RESOLVE_THREATS(plan)
    8: end loop
```

Algorithm 2 Partial Order Planning (POP)
1: function SELECT_SUBGOAL(plan)
2: \quad pick a step $S_{\text {need }} \in S T E P S$ with a precondition c that has not been achieved
3: return $S_{\text {need }}, C$
4: end function

```
Algorithm 3 Partial Order Planning (POP)
    1: function CHOOSE_OPERATOR(plan, OPERATORS, S Seed
    2: choose s step Sadd }\in\mathrm{ OPERATORS U STEPS that has c as an effect
    3: if Sadd }={}\mathrm{ then FAIL
    4: end if
    5: add the causal link Sadd }\mp@subsup{}{}{c
    6: add the ordering constrain S Sadd}<<\mp@subsup{S}{\mathrm{ need }}{}\mathrm{ to ORDERINGS
    7: if Sadd is newly added step from operators then
        add Sadd to STEPS
        add Sstart }\prec\mp@subsup{S}{\mathrm{ add }}{}\prec\mp@subsup{S}{\mathrm{ goal }}{}\mathrm{ to ORDERINGS
10: end if
11: end function
```

```
Algorithm 4 Partial Order Planning (POP)
    1: function RESOLVE_THREATS(plan)
    2: for all Sthreat that threatens a link Si}\mp@subsup{}{~}{c}\mp@subsup{S}{j}{}\in\mathrm{ LINKS do
    3: Promote: add S Shreat }\prec\mp@subsup{S}{i}{}\mathrm{ or Demote: add Sj}\prec\mp@subsup{S}{\mathrm{ threat}}{
    4: if }\neg\mathrm{ CONSISTENT(plan) then FAIL
    5: end if
    6: end for
    7: end function
```


Partially Instantiated Operators

- So far we have not mentioned anything about binding constraints.
- Should an operator that has the effect, say, $\neg A t(x)$, be considered a threat to the condition $\mathrm{At}($ Home $)$?

Dealing with possible threats:

- Resolve with an equality constraint,
- bind x with something that resolves the threat (e.g. $x=T S$)
- Resolve with an inequality constrain.
- Add constrain that x can not be bound to Home.
- Resolve later.
- Ignore possible threats. If $x=$ Home is added later into the plan, try to resolve by promotion or demotion.

```
Algorithm 5 Partial Order Planning (POP)
    1: function CHOOSE_OPERATOR(plan, OPERATORS, S Seed, c)
    2: choose s step Sadd}\in\mathrm{ OPERATORS }\cup\mathrm{ STEPS that has c as an effect such
    that u = UNIFY(c,c',BINDINGS)
    3: if Sadd}={}\mathrm{ then FAIL
    4: end if
    5: add u to BINDINGS
    6: add the causal link Sadd }\mp@subsup{}{}{c
    7: add the ordering constrain Sadd }\prec\mp@subsup{S}{\mathrm{ need }}{}\mathrm{ to ORDERINGS
    8: if Sadd is newly added step from operators then
        add Sadd to STEPS
        add Sstart }\prec\mp@subsup{S}{\mathrm{ add }}{}\prec\mp@subsup{S}{\mathrm{ goal }}{}\mathrm{ to ORDERINGS
    end if
12: end function
```

