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Summary of Previous Lecture

Evolutionary Computation
I Family of global meta-heuristic or stochastic optimization methods.
I Algorithms typically imitate some principle of natural evolution as method to

solve optimization problems.

I Genetic Algorithm
F Universal ”black box” solver for optimization using binary strings.

I Genetic Programming
F Approach for general automatic programming.
F Originally used to evolve Lisp programs.

I Evolutionary Programming
F Motivation was to generate alternative approach to artificial intelligence.
F Early versions applied to the evolution of transition table of finite state machines.

I Evolution Strategies
F Based on the concept of the ”evolution of evolution”.
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Introduction General Problem Solving

General Problem Solving

Traditional approach to solve a problem:

Problem −→ Human −→ Design of special algorithm −→ Solution

Disadvantages:
I design and implementation of specialized algorithm is expensive,
I optimization and tuning of the algorithm is time consuming.

General Problem Solving:

Problem −→ Human −→ Problem formalization −→ Solver −→ Solution

I The user must only formalize the problem.
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Introduction General Problem Solving

General Problem Solving

General principle:

Problem −→ Model −→ Language −→ Solver −→ Solution

1 Having a problem P,

2 choose a model M,

3 choose a language L for definition of model M,

4 choose a solver S for solving problems in L,

5 leave solver automatically solve S(L(P)),

6 interpret S(L(P)) in the context of P.
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Planning

Automatic Planning

Sliding puzzles,

Rubik’s cube,

Blocks world,

All these problems can be simply defined using state space, where each state
represents some structured configuration and actions make changes in this
configuration.
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Planning

Planning vs Search

Planning problem is essentially search problem. However there are differences that
make reasonable to treat them in a different way.

Search Planning

States data structures logical sentences
Actions code preconditions / effects

Goal code logical sentences
Plan sequence of actions constrains on actions

The main benefits are:

Unified action and goal representation (logical language).

Independent solution of sub-goals .

Flexible construction of solution, relax requirement for sequential construction.
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Planning Classical Planning

Classical Planning

Assumptions are:

1 Environment is deterministic

2 Environment is observable

3 Environment is static (in response to the agent’s actions)
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Planning Planning Problem

Planning Problem

Objective is to get tea, biscuits and a book.

Initial state:
The agent is at home without tea, biscuits, book.

Goal state:
The agent is at home with tea, biscuits, book.
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Planning Planning Problem

States

States can be represented by predicates such as:

At(x) - agent is at a specific position x.

Have(y) - agent has an item y.

Sells(x,y) - some location x sells item y.
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Planning Planning Problem

Actions

Go(y) - agent goes to y,
causes At(y) to be true.

Buy(z) - agent buys z,
causes Have(z) to be true.

Steal(z) - agent steals z,
causes Have(z) to be true.
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Planning Planning Problem

Problem Representation

Initially attempted to represent planning problems through variants of
predicate calculus, like first order logic and propositional calculus.

Initial State: We are home we do not have tea, we do not have biscuits and
we do not have a book.

At(Home, s0) ∧ ¬Have(Tea, s0) ∧ ¬Have(Biscuits, s0) ∧ ¬Have(Book , s0)

Goal State: There exists some state where we are at home, we have a tea,
we have biscuits and we have a book.

∃sAt(Home, s) ∧ Have(Tea, s) ∧ Have(Biscuits, s) ∧ Have(Book , s)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 11 / 33



Planning Planning Problem

Operators

∀a, s Have(Tea,Result(a, s)) ⇐⇒ [(a = Buy(Tea) ∧ At(TeaShop, s))

∧ (Have(Tea, s) ∧ a 6= Drop(Tea))]

Result(a,s) names the situation resulting from executing the action a in the
situation s.

Drop(z) - agent drops z,
I causes Have(z) to be false.
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Planning Planning Problem

The frame problem

We have to write rules for all things that does not change.

Everything that just will not change, we have to explicitly specify in predicate
logic to say that it will not change.

Makes representation of a problem very complex.

Resolution: If very few things are changing at a time, then, it is always easier to
model it as changes rather than anything else.
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Planning STRIPS

STRIPS

STanford Research Institute Problem Solver

A STRIPS instance is composed of:

An initial state.

The goal states.

The set of actions (operators) described by
I preconditions - must be satisfied before the action is performed.
I effects - established after the action is performed.
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Planning STRIPS

STRIPS

STRIPS

STRIPS instance is a quadruple (P,A, I,G), where

P is a set of conditions,

A is a set of actions (operators) described by precond(a) ⊆ P and
effect(a) ⊆ P (in original version add(a) ⊆ P, del(a) ⊆ P),

I ⊆ P is initial state,

G ⊆ P is goal state.

Planning problem 6= state space.
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Planning STRIPS

STRIPS: Block World Example 1

?

P = {red-on-ground, red-on-top, red-on-green, red-on-blue,

green-on-ground, green-on-top, green-on-red, green-on-blue,

blue-on-ground, blue-on-top, blue-on-red, blue-on-green }
A = {move-red-ground-green,move-red-ground-blue,move-red-green-blue,

move-red-blue-green,move-red-green-ground,move-red-blue-ground,

move-green-ground-red,move-green-ground-blue, . . . }
I = {red-on-green, green-on-ground, blue-on-top, blue-on-red }
G = {green-on-red, red-on-ground, blue-on-top, blue-on-green }

move-blue-ground-green )
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Planning STRIPS

STRIPS: Block World Example 1

red-on-ground = 0
red-on-top    = 0
red-on-green  = 1
red-on-blue   = 0

green-on-ground = 1
green-on-top    = 0
green-on-red    = 0
green-on-blue   = 0

blue-on-ground  = 0
blue-on-top     = 1
blue-on-red     = 1
blue-on-green   = 0

red-on-ground = 0
red-on-top    = 1
red-on-green  = 1
red-on-blue   = 0

green-on-ground = 1
green-on-top    = 0
green-on-red    = 0
green-on-blue   = 0

blue-on-ground  = 1
blue-on-top     = 1
blue-on-red     = 1
blue-on-green   = 0

move-blue-red-ground
  pre = { blue-on-top, blue-on-red }
  add = { blue-on-ground,
          red-on-top }
  del = { blue-on-red }

move-blue-ground-red
  pre = { blue-on-ground,
          blue-on-top,
          red-on-top }
  add = { blue-on-red }
  del = { blue-on-ground,
          red-on-top }
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Planning STRIPS

Block World Example 2

?

Objects : U = {R,G,B},
Predicates: P = {on, on-ground, on-top, distinct},

Problem in STRIPS (P′,A, I,G):

P′ = {on(x, y), on-ground(x), on-top(x), distinct(x, y) | x, y ∈ {R,G,B} },
A = {move(what, from, to), from-ground(what, to), to-ground(what, from) }
I = {on-ground(G), on(G,R), on(R,B), on-top(B) }

∪ {distinct(x, y) | x, y ∈ {R,G,B}, x 6= y}
G = {on-ground(R), on(R,G), on(G,B), on-top(B) },
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Planning STRIPS

STRIPS: Block World Example 2

?

For each action we define preconditions and effects (add and del):
move(what, from, to)

I pre(move) = {on(from,what), on-top(what), on-top(to), distinct(what, to)},
I add(move) = {on(to,what), on-top(from)},
I del(move) = {on(from,what), on-top(to)},

from-ground(what, to)
I pre(from-ground) = {on-ground(what), on-top(what), on-top(to)}
I add(from-ground) = {on(to,what)}
I del(from-ground) = {on-ground(what), on-top(to)}

to-ground(what, from)
I pre(to-ground) = {on(from,what), on-top(what)}
I add(to-ground) = {on-ground(what), on-top(from)}
I del(to-ground) = {on(from,what)}
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Planning STRIPS

STRIPS: Block World Example 2

on-ground(green)
on(green,red)
on(red,blue)
on-top(blue)

distinct(red,green)
distinct(green,red)
...

to-ground(what,from)
[what:=blue,from:=red]
  pre = { on(from,what),
          on-top(what) }
  add = { on-ground(what),
          on-top(from) }
  del = { on(from,what) }

from-ground(what,to)
[what:=blue,to:=red]
  pre = { on-ground(what),
          on-top(what),
          on-top(to) }
  add = { on(to,what) }
  del = { on-ground(what),
          on-top(to) }  

on-ground(green)
on(green,red)
on-top(blue)
on-ground(blue)
on-top(red)

distinct(red,green)
distinct(green,red)
...
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Planning STRIPS

Representing States

States are represented by positive function-free literals (atoms).
Initial:

At(Home) ∧ Sells(BS,Book) ∧ Sells(TS, Tea) ∧ Sells(TS,Biscuits)

Goal:

At(Home) ∧ Have(Tea) ∧ Have(Biscuits) ∧ Have(Book)

Closed World: unmentioned literals are false.

In later definition states can also contain variables

At(x) ∧ Sells(x, Tea).
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Planning STRIPS

Representing Actions

Action description - serves as a name.

Precondition - a conjunction of positive literals.

Effect - a conjunction of positive and negative literals.
I The original version had an add list and del list

(effect of P ∧ ¬Q means add P, delete Q)

Op(ACTION : Go(There),

PRECOND : At(here) ∧ Path(here, there),

EFFECT : At(there) ∧ ¬At(here))
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Planning STRIPS

Representing Plans

A set o steps, where each step is one of the operators of the problem.

A set of step ordering constrains. Each ordering constrain is of the form
Si ≺ Sj indicating Si must occur sometime before Sj

A set of variable binding constraints of the form v = x where v is a variable in
some step, and x is either a constant or another variable.

A set of causal links written as S
c−→ S′ indicating S satisfies the precondition

c for S′.
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Planning STRIPS

Example

Actions:

Op(ACTION : RightShoe,

PRECONDITION : RightSockOn,

EFECT : RightShoeOn)

Op(ACTION : RightSock ,

EFECT : RightShoeOn)

Op(ACTION : LeftShoe,

PRECONDITION : LeftSockOn,

EFECT : LeftShoeOn)

Op(ACTION : LeftShoe,

EFECT : LeftShoeOn)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 24 / 33



Planning STRIPS

Example: Initial Plan

Plan(

STEPS : {
S1 : Op(ACTION : start),

S2 : Op(ACTION : finish,

PRECOND : RightShoeOn ∧ LeftShoeOn)},
ODRERINGS : {S1 ≺ S2},
BINDINGS : {},
LINKS : {})
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Planning STRIPS

Partial Order Planning

We add steps from the given set of actions in order to satisfy not achieved
preconditions.

We finish when all preconditions of each step has been satisfied.

Any topologically ordered sequence of actions is solution.
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Planning STRIPS

Example

Initial State:

Op(ACTION : Start,

EFFECT : At(Home) ∧ Sells(BS,Book)

∧ Sells(TS, Tea) ∧ Sells(TS,Biscuits))

Goal:

Op(ACTION : Finish,

PRECOND : At(Home) ∧ Have(Tea)

∧ Have(Biscuits) ∧ Have(Book)
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Planning STRIPS

Example

Actions

Op(ACTION : Go(There),

PRECOND : At(here),

EFFECT : At(there) ∧ ¬At(here))

Op(ACTION : Buy(x),

PRECOND : At(store) ∧ Sells(store, x),

EFFECT : Have(x))
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Planning STRIPS

Partial Order Planning: Pseudo-code Sketch

Algorithm 1 Partial Order Planning (POP)
1: plan← INIT MINIMAL PLAN(initial ,goal)
2: loop
3: if SOLUTION(plan) then return plan
4: end if
5: Sneed , c ← SELECT SUBGOAL(plan)
6: CHOOSE OPERATOR(plan,OPERATORS,Sneed ,c)
7: RESOLVE THREATS(plan)
8: end loop

Algorithm 2 Partial Order Planning (POP)
1: function SELECT SUBGOAL(plan)
2: pick a step Sneed ∈ STEPS with a precondition c that has not been achieved
3: return Sneed , c
4: end function
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Planning STRIPS

Algorithm 3 Partial Order Planning (POP)
1: function CHOOSE OPERATOR(plan,OPERATORS,Sneed , c)
2: choose s step Sadd ∈ OPERATORS ∪ STEPS that has c as an effect
3: if Sadd = {} then FAIL

4: end if
5: add the causal link Sadd

c−→ Sneed to LINKS
6: add the ordering constrain Sadd ≺ Sneed to ORDERINGS
7: if Sadd is newly added step from operators then
8: add Sadd to STEPS
9: add Sstart ≺ Sadd ≺ Sgoal to ORDERINGS

10: end if
11: end function
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Planning STRIPS

Algorithm 4 Partial Order Planning (POP)
1: function RESOLVE THREATS(plan)
2: for all Sthreat that threatens a link Si

c−→ Sj ∈ LINKS do
3: Promote: add Sthreat ≺ Si or Demote: add Sj ≺ Sthreat

4: if ¬ CONSISTENT(plan) then FAIL

5: end if
6: end for
7: end function
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Planning STRIPS

Partially Instantiated Operators

So far we have not mentioned anything about binding constraints.

Should an operator that has the effect, say, ¬At(x), be considered a threat to
the condition At(Home)?

Dealing with possible threats:

Resolve with an equality constraint,
I bind x with something that resolves the threat (e.g. x = TS )

Resolve with an inequality constrain.
I Add constrain that x can not be bound to Home.

Resolve later.
I Ignore possible threats. If x = Home is added later into the plan, try to resolve

by promotion or demotion.
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Planning STRIPS

Algorithm 5 Partial Order Planning (POP)
1: function CHOOSE OPERATOR(plan,OPERATORS,Sneed , c)
2: choose s step Sadd ∈ OPERATORS ∪ STEPS that has c as an effect such

that u = UNIFY(c,c’,BINDINGS)
3: if Sadd = {} then FAIL

4: end if
5: add u to BINDINGS
6: add the causal link Sadd

c−→ Sneed to LINKS
7: add the ordering constrain Sadd ≺ Sneed to ORDERINGS
8: if Sadd is newly added step from operators then
9: add Sadd to STEPS

10: add Sstart ≺ Sadd ≺ Sgoal to ORDERINGS
11: end if
12: end function
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