Introduction to Artificial Intelligence
Planning

Ing. Tomas Borovicka

Department of Theoretical Computer Science (KTI), Faculty of Information Technology (FIT)
Czech Technical University in Prague (CVUT)

BIE-ZUM, LS 2013/14, 6. lecture

fs

https://edux.fit.cvut.cz/courses/BIE-ZUM/

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 1/33

https://edux.fit.cvut.cz/courses/BIE-ZUM/

Summary of Previous Lecture

@ Evolutionary Computation

>

| 4

Family of global meta-heuristic or stochastic optimization methods.
Algorithms typically imitate some principle of natural evolution as method to
solve optimization problems.

Genetic Algorithm
* Universal "black box” solver for optimization using binary strings.
Genetic Programming

* Approach for general automatic programming.
* Originally used to evolve Lisp programs.

Evolutionary Programming

* Motivation was to generate alternative approach to artificial intelligence.
* Early versions applied to the evolution of transition table of finite state machines.

Evolution Strategies
* Based on the concept of the "evolution of evolution”.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 2/33

Introduction General Problem Solving

General Problem Solving

@ Traditional approach to solve a problem:

Problem — Human — Design of special algorithm — Solution

@ Disadvantages:

» design and implementation of specialized algorithm is expensive,
» optimization and tuning of the algorithm is time consuming.

@ General Problem Solving:

Problem — Human — Problem formalization — Solver — Solution

» The user must only formalize the problem.

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 3/33

Introduction General Problem Solving

General Problem Solving

General principle:

Problem — Model — Language — Solver — Solution

Having a problem P,

choose a model M,

choose a language L for definition of model M,
choose a solver S for solving problems in L,

leave solver automatically solve S(L(P)),

©000O0O0

interpret S(L(P)) in the context of P.

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 4/33

Automatic Planning

@ Sliding puzzles,
@ Rubik’s cube,

@ Blocks world,

All these problems can be simply defined using state space, where each state
represents some structured configuration and actions make changes in this
configuration.

1! B E DO
[el-[<[e] aama
N B35 E8En
- N/ NS
SN SN E
- aeee
/N [EBE0
E -] / N SN
SN Bamn Gaos
f 1 E Ol o8m
EBEG! EBEA

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture

5/33

Planning vs Search

Planning problem is essentially search problem. However there are differences that
make reasonable to treat them in a different way.

Search Planning

States data structures logical sentences
Actions code preconditions / effects
Goal code logical sentences

Plan | sequence of actions constrains on actions

The main benefits are:
@ Unified action and goal representation (logical language).
@ Independent solution of sub-goals .

@ Flexible construction of solution, relax requirement for sequential construction.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 6/33

Classical Planning

Assumptions are:
@ Environment is deterministic
@ Environment is observable

© Environment is static (in response to the agent’s actions)

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 7133

Planning Problem

Objective is to get tea, biscuits and a book.

e Initial state:
The agent is at home without tea, biscuits, book.

o Goal state:
The agent is at home with tea, biscuits, book.

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 8/33

States

States can be represented by predicates such as:

e At(x) - agent is at a specific position x.
e Have(y) - agent has an item y.

e Sells(x,y) - some location x sells item y.

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 9/33

Actions

e Go(y) - agent goes to y,
causes At(y) to be true.
e Buy(z) - agent buys z,
causes Have(z) to be true.

e Steal(z) - agent steals z,
causes Have(z) to be true.

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 10/33

Problem Representation

@ Initially attempted to represent planning problems through variants of
predicate calculus, like first order logic and propositional calculus.

@ Initial State: We are home we do not have tea, we do not have biscuits and
we do not have a book.

At(Home, sy) N\ —Have(Tea, sy) N\ —Have(Biscuits, sy) A —Have(Book, sp)

@ Goal State: There exists some state where we are at home, we have a tea,
we have biscuits and we have a book.

JdsAt(Home, s) A\ Have(Tea, s) A\ Have(Biscuits, s) A\ Have(Book, s)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 11/33

Operators

Va, s Have(Tea, Result(a, s)) <= [(a = Buy(Tea) A At(TeaShop, s))
A (Have(Tea, s) A\ a # Drop(Tea))]

@ Result(a,s) names the situation resulting from executing the action ain the
situation s.
@ Drop(z) - agent drops z,

> causes Have(z) to be false.

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 12/33

The frame problem

@ We have to write rules for all things that does not change.

@ Everything that just will not change, we have to explicitly specify in predicate
logic to say that it will not change.

@ Makes representation of a problem very complex.

Resolution: If very few things are changing at a time, then, it is always easier to
model it as changes rather than anything else.

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 13/33

STRIPS

@ STanford Research Institute Problem Solver

A STRIPS instance is composed of:
@ Aninitial state.

@ The goal states.
@ The set of actions (operators) described by

» preconditions - must be satisfied before the action is performed.
» effects - established after the action is performed.

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 14/33

STRIPS

STRIPS
STRIPS instance is a quadruple (P, A, Z, G), where

@ P is a set of conditions,

@ Ais a set of actions (operators) described by precond(a) C P and
effect(a) C P (in original version add(a) C P, del(a) C P),

e 7 C Pisinitial state,
@ G C Pis goal state.

Planning problem # state space.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence

BIE-ZUM, LS 2013/14, 6. lecture

15/33

STRIPS: Block World Example 1

-

P = {red-on-ground, red-on-top, red-on-green, red-on-blue,
green-on-ground, green-on-top, green-on-red, green-on-blue,
blue-on-ground, blue-on-top, blue-on-red, blue-on-green }

A = { move-red-ground-green, move-red-ground-blue, move-red-green-blue,
move-red-blue-green, move-red-green-ground, move-red-blue-ground,
move-green-ground-red, move-green-ground-blue, . . . }

T = {red-on-green, green-on-ground, blue-on-top, blue-on-red }

G = {green-on-red, red-on-ground, blue-on-top, blue-on-green }

move-blue-ground-green)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 16/33

STRIPS: Block World Example 1

red-on-ground
red-on-top
red-on-green
red-on-blue
blue-on-ground
blue-on-top
blue-on-red
blue-on-green
green-on-ground
green-on-top
green-on-red
green-on-blue

move-blue-red-ground
pre = { blue-on-top, blue-on-red }
add = { blue-on-ground,
red-on-top }
del = { blue-on-red }

OCOOR ORFROORO®

red-on-ground
red-on-top
red-on-green
red-on-blue
blue-on-ground
blue-on-top
blue-on-red
(b &y blue-on-green
ue-on-re
green-on-ground
{ blue-on-ground, green-on-top
red-on-top } green-on-red
green-on-blue

o

move-blue-ground-red
pre = { blue-on-ground,
blue-on-top,
red-on-top }
add
del

nwaunnn
COOR ORRROKRRO

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 17/33

Block World Example 2

-

@ Objects : U = {R, G, B},
@ Predicates: P = {on, on-ground, on-top, distinct},

Problem in STRIPS (P', A, Z, G):
P’ = {on(x, y), on-ground(x), on-top(x), distinct(x, y) | x,y € {R, G, B} },
A = {move(what, from, to), from-ground(what, to), to-ground(what, from) }
T = {on-ground(G), on(G, R), on(R, B), on-top(B) }
U {distinct(x,y) | x,y € {R,G,B},x # y}
G = {on-ground(R), on(R, G), on(G, B), on-top(B) },

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 18/33

STRIPS: Block World Example 2

-

For each action we define preconditions and effects (add and del):

e move(what, from, to)
» pre(move) = {on(from, what), on-top(what), on-top(to), distinct(what, to) },
» add(move) = {on(to, what), on-top(from)},
» del(move) = {on(from, what), on-top(to)},

e from-ground(what, to)
» pre(from-ground) = {on-ground(what), on-top(what), on-top(to) }
» add(from-ground) = {on(to, what)}
» del(from-ground) = {on-ground(what), on-top(to) }

@ to-ground(what, from)
» pre(to-ground) = {on(from, what), on-top(what) }
» add(to-ground) = {on-ground(what), on-top(from)}
» del(to-ground) = {on(from, what)}

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 19/33

STRIPS: Block World Example 2

- to-ground(what, from)
gﬂ(gﬁggﬂdﬁggﬁe") [what:=b1ue,frém:=red]
d.bl pre = { on(from,what),
gﬂsgngblﬂgg on-top(what) }
add = { on-ground(what),
distinct(red,green) on-top(from) }
distinct(green,red) del = { on(from,what) }

on-ground(green)
on(green,red)

from-ground(what, to) on-top(blue)
[what:=blue, to:=red] on-ground(blue)
pre = { on-ground(what), on-top(red)
on-top(what),
on-top(to) } distinct(red,green)
add = { on(to,what) } distinct(green,red)
del = { on-ground(what), -

on-top(to) }

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 20/33

Representing States
@ States are represented by positive function-free literals (atoms).
Initial:
At(Home) A Sells(BS, Book) A Sells(TS, Tea) N\ Sells(TS, Biscuits)
Goal:
At(Home) A Have(Tea) N\ Have(Biscuits) N\ Have(Book)

@ Closed World: unmentioned literals are false.

@ In later definition states can also contain variables

At(x) N Sells(x, Tea).

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture

21/33

Representing Actions

@ Action description - serves as a name.

@ Precondition - a conjunction of positive literals.
@ Effect - a conjunction of positive and negative literals.

» The original version had an add list and del/ list
(effect of P A =Q means add P, delete Q)

Op(ACTION : Go(There),
PRECOND : At(here) A Path(here, there),
EFFECT : At(there) A\ —At(here))

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 22/33

Representing Plans

@ A set o steps, where each step is one of the operators of the problem.

@ A set of step ordering constrains. Each ordering constrain is of the form
S; < §; indicating S; must occur sometime before S;

@ A set of variable binding constraints of the form v = x where v is a variable in
some step, and x is either a constant or another variable.

@ A set of causal links written as S = S’ indicating S satisfies the precondition
cforS.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 23/33

Example

Actions:

Op(ACTION : RightShoe,
PRECONDITION : RightSockOn,
EFECT : RightShoeOn)

Op(ACTION : RightSock,

EFECT : RightShoeOn)

Op(ACTION : LeftShoe,
PRECONDITION : LeftSockOn,
EFECT : LeftShoeOn)

Op(ACTION : LeftShoe,

EFECT : LeftShoeOn)

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 24/33

U} <

Example: Initial Plan

Plan(

STEPS : {

S1: Op(ACTION : start),

S2: Op(ACTION : finish,

PRECOND : RightShoeOn A LeftShoeOn)},

ODRERINGS : {S; < S:},
BINDINGS : {},
LINKS : {})

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 25/33

Partial Order Planning

@ We add steps from the given set of actions in order to satisfy not achieved
preconditions.

@ We finish when all preconditions of each step has been satisfied.

@ Any topologically ordered sequence of actions is solution.

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 26/33

I L B """

Example

@ Initial State:

Op(ACTION : Start,
EFFECT : At(Home) N Sells(BS, Book)
A Sells(TS, Tea) A Sells(TS, Biscuits))

@ Goal:

Op(ACTION : Finish,
PRECOND : At(Home) A\ Have(Tea)
A Have(Biscuits) N\ Have(Book)

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 27/33

I L B """

Example

@ Actions

Op(ACTION : Go(There),
PRECOND : At(here),
EFFECT : At(there) A\ —At(here))

Op(ACTION : Buy(x),
PRECOND : At(store) A Sells(store, x),
EFFECT : Have(x))

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 28/33

Partial Order Planning: Pseudo-code Sketch

Al

gorithm 1 Partial Order Planning (POP)

1
2

3:

4
5
6:
7
8

: plan <= INIT_MINIMAL_PLAN(/nitial,goal)

: loop

if SOLUTION(plan) then return plan

end if

Sheed; C < SELECT_SUBGOAL(plan)
CHOOSE_OPERATOR(plan,OPERATORS, Sheed,C)
: RESOLVE_THREATS(plan)

. end loop

Al

gorithm 2 Partial Order Planning (POP)

1

2:
3:

4

: function SELECT_SUBGOAL(plan)

pick a step Speeq € STEPS with a precondition ¢ that has not been achieved
return Syeeq, C
: end function

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture

29/33

Algorithm 3 Partial Order Planning (POP)
1: function CHOOSE_OPERATOR(plan, OPERATORS, S eed, C)
2 choose s step S,qy € OPERATORS U STEPS that has c as an effect
3 if Sa00 = {} then FAIL
4 end if
5: add the causal link Szgy — Speed to LINKS
6: add the ordering constrain S;qg < Speeq to ORDERINGS
7
8
9
0

if Saqq is Nnewly added step from operators then
add S,4y to STEPS
add Sgtart < Sagg < Sgoal to ORDERINGS
end if
11: end function

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 30/33

Algorithm 4 Partial Order Planning (POP)
1: function RESOLVE_THREATS(plan)
2 for all Syyez that threatens a link S; 5 S; € LINKS do
3 Promote: add Siprear < S; or Demote: add S; < Sinrear
4: if = CONSISTENT(plan) then FAIL
5
6
7

end if
end for
: end function

Ing. Tomas Borovicka (FIT CTU) Introduction to Atrtificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 31/33

Partially Instantiated Operators

@ So far we have not mentioned anything about binding constraints.

@ Should an operator that has the effect, say, —|At(x), be considered a threat to
the condition At(Home)?

Dealing with possible threats:
@ Resolve with an equality constraint,
» bind x with something that resolves the threat (e.g. x = TS)
@ Resolve with an inequality constrain.
» Add constrain that x can not be bound to Home.

@ Resolve later.

> Ignore possible threats. If x = Home is added later into the plan, try to resolve
by promotion or demotion.

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 32/33

Algorithm 5 Partial Order Planning (POP)
1: function CHOOSE_OPERATOR(plan, OPERATORS, Syeed, C)
2: choose s step S,q¢ € OPERATORS U STEPS that has c¢ as an effect such
that u = UNIFY(c,c’,BINDINGS)
3 if Sao0 = {} then FAIL
4 end if
5 add u to BINDINGS
6: add the causal link Szqy — Speed to LINKS
7: add the ordering constrain S;qg < Speeq 10 ORDERINGS
8
9
0

if S,qq is Nnewly added step from operators then
add S,4y to STEPS
add Sgtart < Sagg < Sgoar to ORDERINGS
11: end if
12: end function

Ing. Tomas Borovicka (FIT CTU) Introduction to Artificial Intelligence BIE-ZUM, LS 2013/14, 6. lecture 33/33

	Introduction
	General Problem Solving

	Planning
	Classical Planning
	Planning Problem
	STRIPS

