Introduction to Artificial Intelligence Apriory Algorithm, Nearest Neighbor, Naive Bayes, Decision Tree, k-means

Ing. Tomas Borovicka

Department of Theoretical Computer Science (KTI), Faculty of Information Technology (FIT) Czech Technical University in Prague (CVUT)

BIE-ZUM, LS 2013/14, 8. lecture

https://edux.fit.cvut.cz/courses/BIE-ZUM/

Ing. Tomas Borovicka (FIT CTU)

Introduction to Artificial Intelligence

BIE-ZUM, LS 2013/14, 8. lecture 2 / 24

Association Rule Mining

- Unsupervised technique, learning from observations.
- Association rule mining is a method for discovering interesting relations in data.
 - Discovering regularities between products in transaction data.
- "If Then" relationship. If this happen, what is likely to happen next.

Generally two-step process:

- Find all frequent itemsets.
- Q Generate interesting rules from the frequent itemset.

$$\{A, B, \ldots\} \Rightarrow \{C, D, \ldots\}$$
$$\{swimsuite, beachtowel\} \Rightarrow \{sunglasses\}$$
$$\{bread, butter\} \Rightarrow \{milk\}$$

Association Rule Mining

Association rule mining problem

Let $I = \{i_1, i_2, ..., i_n\}$ be a set of **items** and let $D = \{t_1, t_2, ..., t_n\}$ be a set of **transactions** called **database** where each transaction t_i is set of items such that $t_i \subseteq I$. An association rule is an implication of the form

$$A \Rightarrow B$$
,

where $A, B \subset I$ and $A \cap B = \emptyset$. The set of items on the left side of the association rule (*A*) is called **antecedent** and the set of items on the right side (*B*) is called **consequent**.

Support & Confidence

Support

The support $support(A \Rightarrow B)$ is defined as the percentage of transactions in *D* which contain $A \cup B$ (i.e. both *A* and *B*). This is interpreted as an estimate of probability $P(A \cup B)$.

 $support(A \Rightarrow B) = P(A \cup B)$

Confidence

The confidence $confidence(A \Rightarrow B)$ is defined as the percentage of transactions in *D* containing *A* that also contain *B*. This is interpreted as an estimate of the probability P(A|B).

$$\mathit{confidence}(A \Rightarrow B) = rac{\mathit{support}(A \cup B)}{\mathit{support}(A)}$$

Example of Rules

Market basket transactions.

TID	Items	
1	{Bread, Milk}	$ \begin{cases} \text{Milk, Diaper} \} \Rightarrow \{\text{Beer}\} (\text{s=0.4,c=0.67}) \\ \{\text{Milk, Beer}\} \Rightarrow \{\text{Diaper}\} (\text{s=0.4,c=1.0}) \\ \{\text{Diaper, Beer}\} \Rightarrow \{\text{Milk}\} (\text{s=0.4,c=0.67}) \\ \{\text{Beer}\} \Rightarrow \{\text{Milk, Diaper}\} (\text{s=0.4,c=0.67}) \end{cases} $
2	$\{Bread, Diapers, Beer, Eggs\}$	
3	$\{Milk, Diapers, Beer, Cola\}$	
4	$\{{\sf Bread}, {\sf Milk}, {\sf Diapers}, {\sf Beer}\}$	${Diaper} \Rightarrow {Milk, Beer} (s=0.4,c=0.5)$
5	$\{{\sf Bread}, {\sf Milk}, {\sf Diapers}, {\sf Cola}\}$	${Milk} \Rightarrow {Diaper, Beer} (s=0.4,c=0.5)$

Apriory Algorithm

- Mining frequent itemsets for boolean associations rules.
 - Find the frequent itemsets.
 - 2 Generate strong association rules from the frequent itemsets.
- Frequent itemsets: the sets of items that have minimum support.
- Apriori property: Any subset of frequent itemset must be frequent.
 - ▶ $\forall A, B : (A \subseteq B) \Rightarrow support(A) \ge support(B)$
 - Anti-monotone property of support.
- Strong association rules: satisfy both minimum support and minimum confidence.

Frequent Itemsets

- Level-wise search
 - k-itemsets are used to explore (k+1)-itemsets.
- **1** First, the set of frequent 1-itemsets, L_1 , is found.
 - All items with minimal support.
- **2** L_1 is used to find the set of frequent 2-itemsets, L_2 .
 - Candidates are generated using join operation, $L_1 \times L_1$.
 - The set of frequent 2-itemsets is determined by minimum support.
- **3** L_2 is used to find the set of frequent 3-itemsets, L_3 .
 - Candidates are generated using join operation, $L_2 \times L_2$.
 - The set of frequent 3-itemsets is determined by minimum support.
- **n** Until no frequent *k*-itemsets can be found.

....

Apriori Algorithm Pseudocode

Algorithm 1 Apriori Algorithm

- 1: C_k ... candidate itemset of size k
- 2: $L_k \dots$ frequent itemset of size k

3:

4:
$$L_1 \leftarrow \{1 - items, such that support(i) \geq \theta\}$$

5: for
$$k = 1; L_k! = \emptyset; k + + do$$

6:
$$C_{k+1} \leftarrow \{ candidates generated from L_k \}$$

7:
$$L_k \leftarrow \{c : c \in C_k, support(c) \geq \theta\}$$

8: end for

return $\bigcup_k L_k$

Strong Association Rules

- For each frequent itemset *I* are generated all nonempty subsets *s* ⊂ *I*.
- For each nonempty set s ⊂ I that satisfies

$$\frac{support(l)}{support(s)} \geq \theta_{conf_{min}},$$

where $\theta_{\mathit{conf_{\min}}}$ is minimum confidence treshold, is generated strong association rule

$$s \Rightarrow (I \setminus s).$$

Nearest Neighbor Classification

- The Nearest Neighbor is one of the simplest and oldest commonly used classification methods.
- Based on learning by similarity, i.e. on comparing given unknown instance with the instances in the training set that are similar to it.
- Holds all training instances in the memory.
- Every time it has to compare whole training set with a given unknown instance.
- Inefficient with large datasets.

 For given unknown instance x' finds the most similar instance x* from the training set R and classifies x' into the the class of x*

$$x^* = \argmin_{x \in R} ||x - x'||$$

using the Euclidean distance

$$x^* = \operatorname*{arg\,min}_{x\in R} \sqrt{\sum_j (x_j - x'_j)^2}.$$

Unknown instance x' is classified into the same class as x*, let y* be the corresponding label then y' = y*.

k-Nearest Neighbors

- instead of searching one most similar instance, k instances (nearest neighbors) are found
- The unknown instance is classified into the majority class of k nearest neighbors.

Let X^* be set of k nearest neighbors with corresponding classes Y^* , the unknown instance is classified into the class

$$y_{*} = \arg\max_{y_{i} \in Y^{*}} |\{Y^{*} = y_{i}\}|$$
(1)

k-NN

Decision Border

Ing. Tomas Borovicka (FIT CTU)

Bayesian Classification

- Probabilistic methods based on Bayes theorem.
- Assumes that hypothesis that approximates target function well over observed examples will also approximate well over unobserved examples.

Bayes theorem

Let *y* be a hypothesis, such as that an example **x** belongs to a specific class *y*, Bayes theorem is

$$P(y|\mathbf{x}) = rac{P(\mathbf{x}|y) \cdot P(y)}{P(\mathbf{x})},$$

where P(y) and $P(\mathbf{x})$ are the **prior probabilities**, $P(\mathbf{x}|y)$ is the **posterior probability** of example *x* conditioned by class *y* and $P(y|\mathbf{x})$ is the posterior probability of class *y* conditioned by example **x**.

Maximum a posteriori (MAP)

- The learner considers some set of candidate hypothesis, such as that *x* belongs to all possible $y \in \mathcal{Y}$, and chooses the most probable hypothesis.
- The most probable hypothesis given observed data is called **Maximum a posteriori (MAP)**.

Maximum a posteriori

$$y_{MAP} = \underset{y \in \mathcal{Y}}{\arg \max} P(y|\mathbf{x})$$
$$y_{MAP} = \underset{y \in \mathcal{Y}}{\arg \max} \frac{P(\mathbf{x}|y) \cdot P(y)}{P(\mathbf{x})}$$
$$y_{MAP} = \underset{y \in \mathcal{Y}}{\arg \max} P(\mathbf{x}|y) \cdot P(y)$$

Naive Bayes Classifier

• The **naive** assumption of conditional independence of attributes.

Conditional independence assumption

$$P(\mathbf{x}|y) = P(x_1, x_2, \dots, x_n|y) = P(x_1|y) \cdot P(x_2|y) \cdot \dots \cdot P(x_n|Y)$$

= $\prod_{i=1}^n P(x_i|y)$

• The maximum a posteriori for naive Bayes is then

$$y_{MAP} = P(y) \cdot \prod_{i=1}^{n} P(x_i | y)$$

- The assumption is in practice almost always violated, however, it may still find maximum probability hypothesis!
- Experiments have shown that Naive Bayes is competitive with other methods.

Decision Tree

- Very popular across various domains.
 - Simple and interpretable.
- Decision tree is represented by a nodes in the rooted tree structure (usually binary).
 - Nodes: attributes
 - Edges: attribute values
 - Leaves: classes
- Classification of an unknown example is performed by successive testing in internal nodes and corresponding routing towards the most appropriate leaf which contains the probability vector indicating the class.

Example: Iris Classification

Ing. Tomas Borovicka (FIT CTU)

Learning Decision Tree

- Finding minimal optimal decision tree is **NP-hard** task.
 - Heuristics methods are generally used for learning (greedy search).
- Decision tree is induced on a recursive partitioning of the input space.
- In each decision node we determine an attribute X_j with partitioning Φ_j that maximize the splitting criterion Ψ, formally

$$\arg\max_{j,k}\Psi(X_j,\Phi_j)$$

Splitting Criteria

Information Gain

$$IG(X_j) = \Delta H(X_j) = H(Y) - H(Y|\phi_j)$$

Gain Ratio

$$GR(X_j) = \frac{H(Y) - H(Y|\phi_j)}{H(X_j)}$$

Gini Index

$$\Delta G(X_j) = G(Y) - G(Y|\phi_j)$$

Stopping Criteria and Pruning

Stopping Criteria

- Terminates learning of the three, when further growing would probably does not increase the decision tree performance.
 - All instances in the training set are from the same class.
 - Depth of the tree reached defined maximal limit.
 - The number of cases in the node is less than the minimum limit for inner nodes.
 - If the node were be split the number of cases in one or more terminal nodes would be less than the minimum limit.
 - > The best splitting criteria is less than defined minimum threshold.

Pruning

- Pruning is technique for cutting over-fitted trees, it uses various measures to remove the least reliable branches to make simpler and more accurate decision tree.
 - Pre-Pruning
 - Post-Pruning

k-means

- One of the most popular clustering algorithms.
- The number of clusters is parameter of the algorithm.
- Uses representative point for each cluster (centroid).

k means

Let $X = \{x^1, x^2, ..., x^n\}$ be a set of *n* points in *m* dimensions, $X \in \mathbb{R}^m$. *k*-means arranges these points into *k* clusters by minimizing the total energy

$$E = \sum_{l=1}^{k} \sum_{x^i \in c_l} \|x^i - \mu_l\|^2,$$

where μ_l is a centroid of the points in the cluster c_l defined as

$$\mu_I = \frac{1}{|c_I|} \sum_{x^i \in c_I} x^i.$$

k-means Pseudocode

Algorithm 2 k-means Algorithm

- 1: Randomly initialize cluster centroids $\mu_1, \mu_2, \ldots, \mu_k$
- 2: repeat
- 3: for all $x^i \in X$ do
- 4: $c^i \leftarrow c_l$: arg min_l $||x^i \mu_l||^2$
- 5: end for
- 6: for $c_l \in C$ do
- 7: $\mu_l = \frac{1}{|c_l|} \sum_{x^i \in c_l} x^i$
- 8: end for
- 9: until convergence

k-means Illustration

Source: Stanford University, CS221, http://stanford.edu/~cpiech/cs221/