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Summary of Previous Lecture

Data Mining Algorithms:
I Apriori
I Nearest Neighbor Classification
I Naive Bayes
I Decision Tree
I k-means
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Multi-agent Systems

Multi-agent System

Multi-agent system is a collection of semi-autonomous sub-agents in shared
environment, such that each agent

perceives the environment,

acts flexibly to reach its objectives,

interacts with other agents
I cooperates or competes.
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Multi-agent Systems Agent Definition

Agent Definition

Russel & Norwig

An intelligent agent perceives its environment via sensors and acts rationally upon
that environment with its effectors.

Maes

Autonomous agents are computational systems that inhabit some complex
dynamic environment, sense and act autonomously in this environment, and by
doing so realize a set of goals or tasks for which they are designed.

Hayes-Roth

Intelligent agents continuously perform three functions: perception of dynamic
conditions in the environment; action to affect conditions in the environment; and
reasoning to interpret perceptions, solve problems, draw inferences, and determine
actions.
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Multi-agent Systems Agent Definition

Agent Definition

Wooldridge & Jennings

An agent is an entity which is: Situated in some environment.

Autonomous, in the sense that it can act without direct intervention from
humans or other software processes, and controls over its own actions and
internal state.

Flexible which means:
I Responsive (reactive): agents should perceive their environment and respond

to changes that occur in it;
I Proactive: agents should not simply act in response to their environment, they

should be able to exhibit opportunistic, goal-directed behavior and take the
initiative when appropriate;

I Social: agents should be able to interact with humans or other artificial agents.
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Multi-agent Systems Agent Definition

Agent Features

autonomous control over its own actions,

goal-oriented realize a set of goals,

reactive reacts on changes in the environment,

proactive initiative goal-directed behavior,

communicative communicates with other agents, perhaps including humans,

learning changes its behavior based on its previous experience,

mobile able to move to another place / machine,
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Multi-agent Systems Agent Function

Agent Function

Agent function

Behavior of an agent is describe by agent function, which maps any given percept
sequence to an action:

f : P → A.

The agent function is implemented by an agent program.

The agent function is an abstract mathematical description.

Agent program is concrete implementation running within some physical
system.
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Multi-agent Systems Agent Function

Basic Types of Agent programs
Rozlišujeme 4 úrovně agentů z hlediska komplexnosti:

1 Simple reflex agent
I select actions on the basis of the current percept, ignoring the rest of the

percept history,
I fully observable environment,
I controlled by condition–action / if-then rules,

2 Model-based reflex agent
I internal state hat depends on the percept history,
I partially observable environment,
I model of the environment, that helps to determine the current state of a partially

observable environment
3 Goal-based agent

I information that describes situations that are desirable (goals),
I uses search and planning to find action sequences that achieve the goals,

4 Utility-based agent
I uses utility function

F a mapping from states of the world to real numbers,
F indicating the agent’s level of happiness with that state of the world.
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Multi-agent Systems Utility Function

Utility Function

Utility-based agent acts rationally if prefers actions that maximize its utility.

An utility is a numeric value representing how ’good’ the state is.

Utility function

An utility function is a function which associates a real value with every
environment state:

u : S → R

such that u(s1) ≥ u(s2) iff the agent prefers s1 to s2, i.e. s1 3 s2.
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Multi-agent Systems Utility Function

Lottery

An agent may not know the outcomes of his actions, but may instead only have a
probability distribution over the outcomes.

Lottery

A lottery is a probability distribution over outcomes:

[p1 : o1, p2 : o2, . . . , pk : ok ],

where oi are outcomes and pi > 0 are probabilities such that

k∑
i=1

pi = 1.

The lottery specifies that outcome oi occurs with probability pi .

We will consider lotteries to be outcomes.
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Multi-agent Systems Agent’s Rationality

Agent’s Rationality

LetA = {A1, . . . ,An} be a set of agents such that each agent selects
actions which outcome is given by lottery ` ∈ L.

Consider that each agent Ai has an utility function ui such that ui(oj) is an
utility of outcome oj for an agent Ai .
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Multi-agent Systems Agent’s Rationality

Agent’s Rationality

Self-interested rational agent

Self-interested rational agent is an agent Ai that selects the action that maximize
its individual utility, i.e. executing the lottery `∗ that maximize the expected utility.

`∗ ∈ arg max
`∈L

∑
(pj : oj)∈`

pj · ui(oj)

Cooperative rational agent

Cooperative rational agent is an agent Ai , that selects the action that maximize
collective utility of all agents Ai ∈ A, i.e. executing the lottery `∗ that maximize the
expected utility of all agents:

`∗ ∈ arg max
`∈L

∑
Ak∈A\{Ai}

∑
(pj : oj)∈`

pj · uk(oj) +
∑

(pj : oj)∈`

pj · ui(oj).
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Game Theory

Game Theory

Mathematical study of interaction between rational,
I Formal description, analyzing and choosing optimal strategy. . .

self-interested agents.

Basic categories:
I Cooperative games – modeling unit is a team, where agents have the same

interest.
I Non-cooperative games – modeling unit is an individual that pursue their own

interests.

Theoretical description in:
I normal form – the game is represented by matrix,
I extensive form – the game is represented by game tree
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Game Theory Games in Normal Form

Games in Normal Form

Finite game in normal form

Finite game in normal form for n players is a triplet (N ,A, u), where

N = {N1, . . . ,Nn} is a set of players,

A = A1 × . . .× An, where Ai is the action set for player Ni ,
I a ∈ A is an action profile, and so A is the space of action profiles,

u = (u1, . . . , un) is a utility function, where ui denotes utility function for
player Ni .

I ui : A → R,
I ui(a) denotes utility of player Ni with action profile a ∈ A
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Game Theory Games in Normal Form

Rock-paper-scissors

N1

N2

R

P

S

R P S

0, 0 -1, 1 1, -1

-1, 1

-1, 11, -1 0, 0

0, 01, -1

N = {N1,N2}
A = {R,P,S} × {R,P,S} = {(R,R), (R,P), (R,S),

(P,R), (P,P), (P,S) }
(S,R), (S,P), (S,S),

u1 : (R,R) 7→ 0, (R,P) 7→ −1, (R,S) 7→ 1,
(S,R) 7→ −1, (S,P) 7→ 1, (S,S) 7→ 0,
(P,R) 7→ 1, (P,P) 7→ 0 (P,S) 7→ −1,

u2 : (R,R) 7→ 0, (R,P) 7→ 1, (R,S) 7→ −1,
(S,R) 7→ 1, (S,P) 7→ −1, (S,S) 7→ 0,
(P,R) 7→ −1, (P,P) 7→ 0 (P,S) 7→ 1,
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Game Theory Games in Normal Form

Coordination Games
Common-payoff

Common-payoff game

Let G = (N ,A, u) be a game in normal form, then G is a common-payoff game
iff

∀a ∈ A : u1(a) = u2(a) = . . . = un(a).

Example:

Choosing sides
N1

N2

L

R

L R

1, 1 0, 0

0, 0 1, 1
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Game Theory Games in Normal Form

Competition games
Constant-sum

Constant-sum game

Let G = (N ,A, u) be a game in normal form, then G is a constant-sum game iff

∃c ∈ R : ∀a ∈ A :
n∑

i=1

ui(a) = c.

Special case in which c = 0 is called zero-sum game.

Example:

Matching pennies

N1

N2

H

T

H T

1, -1 -1, 1

-1, 1 1, -1

Ing. Tomas Borovicka (FIT CTU) Multi-agent systems and The Game Theory BIE-ZUM, LS 2013/14, 10. lecture 17 / 181



Game Theory Games in Normal Form

Which action profiles are interesting?

Pareto Optimality
I There is no other action profile that would increase utility of any player without

reducing utility of at least one player.

Nash Equilibrium
I Any player can not increase its utility by changing action profile.
I Players are in equilibrium, a change by any player would lead to decrease in its

utility.
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Game Theory Games in Normal Form

Pareto Optimality

Multi-criteria optimization.
I More than one objective function to be optimized simultaneously.

Trade-offs between two or more conflicting objectives.
I e.g. minimizing cost while maximizing quality.

F cheap products are usually of poor quality,
F good quality products are expensive. . .
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Game Theory Games in Normal Form

Pareto Optimality: Example

Consider category of products on the market that you can get in various
quality and price.

price

qu
al
ity

Products labeled with red color are Pareto-optimal, because:
I there is no product at lower or equal price with higher quality,
I there is no product with higher or equal quality at a lower price.

Products labeled with black color are not Pareto-optimal, because:
I there is a higher quality product at a lower or equal price (or)
I there is a product at lower price with equal or higher quality.

Ing. Tomas Borovicka (FIT CTU) Multi-agent systems and The Game Theory BIE-ZUM, LS 2013/14, 10. lecture 20 / 181



Game Theory Games in Normal Form

Pareto Optimal Borders

f1

f2

f1

f2

f1

f2

f1 max, f2 min f1 max, f2 max

f1 min, f2 min
f1

f2

f1 min, f2 max
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Game Theory Games in Normal Form

Pareto Optimality in Game Theory

Pareto-dominance

Consider a game in normal form (N ,A, u). We say that action profile
a′ = (a′N1

, . . . , a′Nn
) ∈ A Pareto-dominates action profile

a = (aN1 , . . . , aNn) ∈ A iff:

1 ∀i ∈ {1, . . . , n} : ui(a′) ≥ ui(a),

2 ∃i ∈ {1, . . . , n} : ui(a′) > ui(a).

Pareto-optimality

Let (N ,A, u) be a game in normal form. Action profile a∗ ∈ A is Pareto-optimal,
if there is no action profile a′ ∈ A that Pareto-dominates it.
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Game Theory Games in Normal Form

Example: Pareto-optimal Action profiles

Consider a game in normal form with following game matrix.

Pareto-optimal action profiles are labeled by green color.

N1

N2

E

F

G

A B C

6, 3 8, 2 8, 3

4, 5

6, 43, 2 4, 5

5, 70, 8

D

7, 1

6, 5

6, 1
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Game Theory Games in Normal Form

Nash equilibrium
Best response

Games in normal form assume limited observability

Players selects actions independently to each other.

If the player would knew what everyone else was going to do, it would be easy
to pick an action.

Best Response

Consider a game in normal form (N ,A, u) action profile a = (aN1 , aN2 , . . . , aNn)

of player Ni ∈ N and its utility function ui .
Let

a−i = (aN1 , . . . , aNi−1 , aNi+1 , . . . , aNn)

be an action profile with actions of all players without Ni .
Then the best response is

BR(a−i) = arg max
âNi∈Ai

ui((aN1 , . . . , aNi−1 , âNi , aNi−1 , . . . , aNn))

Ing. Tomas Borovicka (FIT CTU) Multi-agent systems and The Game Theory BIE-ZUM, LS 2013/14, 10. lecture 24 / 181



Game Theory Games in Normal Form

Nash equilibrium

Nash equilibrium

Consider a game in normal form (N ,A, u) and action profile
a = (aN1 , aN2 , . . . , aNn). We say that a is Nash equilibrium iff

∀i ∈ {1, . . . , n} : aNi ∈ BR(a−i).

Nash equilibrium is an action profile where action of each player is the best
response.

I Knowing the actions of the others all players are ”happy” with the action they
selected.

I Players are in equilibrium means that no player wants to change the action.
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Game Theory Games in Normal Form

Example

Consider a game in normal form with following game matrix.

Nash equilibrium are labeled by gold color.

N1

N2

E

F

G

A B C

6, 3 8, 2 8, 3

4, 5

6, 47, 9 4, 5

5, 79, 9

D

9, 8

6, 5

6, 1
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Games in Extensive Form Introduction

Games in Extensive Form
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Games in Extensive Form Introduction

Examples

tic-tac-toe,

chess,

checkers,

reversi,

go,

. . .
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Games in Extensive Form Definition

Game in Extensive Form

Finite Game in Extensive Form

A finite game in extensive form for n players is a tuple (N ,A,H, T , χ, ρ, σ, u)
N = {N1, . . . ,Nn} is a set of players,

A is a set of actions,

H is a set of decision nodes,

χ : H → 2A assigns a set of possible actions for each node,

ρ : H → N assigns to each non-terminal node a player whose turn,

T is a set of terminal nodes, T ∩ H = {},
σ is a successor function σ : H ×A → H ∪ T

I ∀h1, h2 ∈ H ∀a1, a2 ∈ A : σ(h1, a1) = σ(h2, a2)⇒ (h1 = h2 ∧ a1 = a2),
I Decision nodes form a game tree.

u = (u1, . . . , un), where ui : T → R is a utility function of player Ni in the
terminal nodes.
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Games in Extensive Form Definition

Example of Trivial Game in Extensive Form
s0

s1 s2

s11 s12 s13 s21

a1 a2

a11 a13a12 a21

s121 s122

a211a122a121

N1

N2

N1

decision node
N1 wins N2 wins

s211

N = {N1,N2}
A = {a1, a2, a11, a12, a13, a21,

a121, a122, a211}
H = {s0, s1, s2, s12, s21}
T = {s11, s13, s121, s122, s211}
χ : s0 7→ {a1, a2}, s1 7→ {a11, a12, a13},

. . . , s21 7→ {a211}
ρ : s0, s12, s21 7→ N1,

s1, s2 7→ N2

σ : (s0, a1) 7→ s1, (s0, a2) 7→ s2,
(s1, a11) 7→ s11, (s1, a12) 7→ s12,
. . . , (s21, a211) 7→ s211

u1 : s11, s122, s211 7→ 1, s121, s13 7→ −1
u2 : s11, s122, s211 7→ −1, s121, s13 7→ 1
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Games in Extensive Form Two Player Zero-sum Games

Two Player Zero-sum Games

Two player, zero sum games have a prominent position in game theory.

Two player zero-sum game

Two player zero-sum game in extensive form is a game (N ,A,H, T , χ, ρ, σ, u),
where:

1 |N | = 2,

2 u = (u1, u2),

3 ∀t ∈ T : u1(t) + u2(t) = 0.

Motivation: chess, checkers, tac-tac-toe, . . .

Game finishes in terminal node in one of the following states:
I player N1 wins, player N2 loses u1(t) = 1, u2(t) = −1,
I player N1 loses, player N2 wins u1(t) = −1, u2(t) = 1,
I draw u1(t) = 0, u2(t) = 0.
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Games in Extensive Form Searching a Game Tree

Size of a Game Tree

Game in extensive form induces a game tree, typically with huge number of nodes:

Tic-Tac-Toe
I trivial game,
I 5478 valid configurations,
I 255168 leafs in the game tree.

Checkers
I ≈ 1020 valid configurations,
I ≈ 1040 leafs in the game tree.

Chess
I ≈ 1045 valid configurations,
I ≈ 10123 leafs in the game tree.
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Games in Extensive Form Optimal Play

Players MIN a MAX
If we consider two player zero-sum game we can substitute utility functions of
both players by one function u : T → R,

I MAX – decision nodes in a game tree are marked by4
F players whose turn,
F maximizes u,

I MIN – decision nodes in a game tree are marked by5
F opponent,
F minimizes u,

? ??
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Games in Extensive Form Optimal Play

Optimal Play

Player can make
I non-optimal move

F player MAX does not select an action maximizing the minimal utility,
F player MIN does not select an action minimizing the maximal utility,
F example: player could win but selects an action that allows the opponent to win.

I optimal move
F player selects optimal action and its position is not worse,
F example: player can win and chooses an action that lead to win.

Player play optimal (perfect) play if in each turn selects an optimal action.
I To play optimally is very difficult – combinatorial explosion.
I It is not feasible to consider all possible actions.
I Heuristics, limited depth of the game tree.
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Games in Extensive Form Optimal Play

Perfect play

� The unlimited intellect assumed in the theory of games, on the
other hand, never makes a mistake and a smallest winning advantage is
as good as mate in one. A game between two such mental giants, Mr. A
and Mr. B, would proceed as follows. They sit down at the chessboard,
draw the colours, and then survey the pieces for a moment. Then either

(1) Mr. A says, “I resign” or
(2) Mr. B says, “I resign” or
(3) Mr. A says, “I offer a draw,” and Mr. B replies, “I accept.” �

Claude E. Shannon, 1950
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Games in Extensive Form Optimal Play

Perfect play for player × in Tic-Tac-Toe

(Wikipedie)
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Games in Extensive Form Minimax Algorithm

Minimax Algorithm

Selects the optimal action.

Assumes that opponent plays optimally.

1 From the current decision generate complete game tree (or to depth equal
to d) by in-order depth first traversing.

2 Evaluate each node:
I eval[x]← u(x), if x is terminal or depth = d ,

F u(x) is either real utility, if x is terminal node, or heuristic if the expansion finished
in depth d .

I eval[x]← max
a∈χ(x)

eval[σ(x, a)], if x is MAX decision node,

I eval[x]← min
a∈χ(x)

eval[σ(x, a)], if x is MIN decision node.

3 Return action a ∈ arg max
a∈χ(x0)

eval[σ(x0, a)].
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Games in Extensive Form Minimax Algorithm

Minimax Example

764 3 2 8 3 7 9 6 1 5

4 2 8 7 9 6 1 5

2 7 1

7
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Games in Extensive Form Alfa-beta Pruning

Alfa-beta Pruning

Minimax needs to be optimized.
I Searching the game tree is usually feasible only for small d .
I for example average branching factor for chess is 35. . .

With alfa-beta pruning algorithm keep two values for each expanded node

α – the highest utility, that player MIN can not reduce if player MAX plays
optimally. . .

β – the lowest utility, that player MAX can not increase if player MIN plays
optimally. . .
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Games in Extensive Form Alfa-beta Pruning

Alfa-beta Pruning

10

α = 10

9

10

β = 10

11
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Games in Extensive Form Alfa-beta Pruning

Alfa-beta Pruning

10

α = 10

9

α ≥ 10

10

β = 10

11

β ≤ 10
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Games in Extensive Form Minimax with Alfa-beta Pruning Example

Minimax with alfa-beta prunning: Example

64 3 2 6

4 2 6

2

7

7

3 7

7

7

6

6

7
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Games in Extensive Form Evaluation Function

Evaluation Function

Minimax with alfa-beta pruning selects optimal action in the root based on
expected utility.

I . . . all depends on the quality of evaluation function!

Evaluation function should be:
I fast,
I accurate.

Horizon problem with limited depth:
I in d = 5 is utility high, but in d = 6 might be significantly reduced (for example

opponent takes queen).
I Expansion should end in stable state (quiescence search).

Ing. Tomas Borovicka (FIT CTU) Multi-agent systems and The Game Theory BIE-ZUM, LS 2013/14, 10. lecture 43 / 181


	Multi-agent Systems
	Agent Definition
	Agent Function
	Utility Function
	Agent's Rationality

	Game Theory
	Games in Normal Form

	Games in Extensive Form
	Introduction
	Definition
	Two Player Zero-sum Games
	Searching a Game Tree 
	Optimal Play
	Minimax Algorithm
	Alfa-beta Pruning
	Minimax with Alfa-beta Pruning Example
	Evaluation Function


